Inhaltsverzeichnis

I	Eir	nleitung	1		
1	Einleitung und Problemstellung 1.1 Motivation				
	1.2				
	1.3	Zielsetzung	5 6		
	1.4	Herangehensweise und Aufbau der Arbeit	7		
2	Nor	nenklatur	9		
	2.1	.1 Der Repräsentationsraum \mathbb{R}^3			
	2.2	Kurven und Flächen	12		
	2.3	Basisgrößen der Zerspanung	13		
3	Erke	enntnisstand zur spanenden Formgebung	17		
	3.1	Materialabtragsmechansimen	17		
		3.1.1 Makroskopische Zerspanmechanismen	18		
		3.1.2 Mikroskopische Zerspanmechanismen	19		
	3.2	Modellierung der Zerspankräfte	20		
		3.2.1 Makroskopische Zerspankraftmodelle	20		
		3.2.2 Mikroskopische Kraftmodelle	22		
	3.3	Visualisierung und physikbasierte Simulation	23		
		3.3.1 Visualisierung	23		
		3.3.2 Co-Simulation	24		
		3.3.3 Visualisierung der Werkstückoberfläche	26		
		3.3.4 Objektrepräsentationen für den Booleschen Mate-			
		rialabtrag	27		
		3.3.5 Die Oberflächenfeingestalt von Mikrofräsprozes-			
		sen mit Kugelkopffräsern	30		
	3.4	Fazit	30		
II	OI	perflächengenerierung	33		
4	Kine	ematik	35		
	4.1 Raumkurven				
	4.2	Kinematische Ketten für Dreh- und Fräsprozesse	40		

Inhaltsverzeichnis

	4.3	Schneidenmodellierung 4								
		4.3.1	Der Schneidenverlauf	42						
		4.3.2	Das Kräftedreibein	43						
5	Imp	lizite C	Dberflächenmodellierung	47						
	5.1	Einlei	tung	47						
		5.1.1	Die implizite Repräsentation	48						
	5.2	Distar	nzfelder zur impliziten Oberflächendarstellung	48						
	5.3	Mani	oulatoren	50						
		5.3.1	Komposition mit R-Funktionen	50						
		5.3.2	Weiche Kompositionen (Blending)	52						
		5.3.3	Affine Transformation	53						
		5.3.4	Bewegungsvolumen (Sweep-Volumen)	53						
		5.3.5	Deformation und Materialfluß	56						
		5.3.6	Modell eines Mikrofräsers	57						
6	Das Oberflächenmodell 6									
	6.1	Einlei	tung	61						
		6.1.1	Bezeichnungen	62						
	6.2	Realis	sierung des Materialabtrags	63						
		6.2.1	Die Funktion der Spanungsdicke h	63						
		6.2.2	Die Übergangsfunktion q	66						
		6.2.3	Die Aktualisierung des Werkstücks	67						
	6.3	Imple	mentietung einer 2D-Bildraummethode	68						
7	Das Prozessmodell 7									
	7.1	Einlei	tung	71						
		7.1.1	Bezeichnungen	73						
	7.2	Zersp	ankräfte	73						
		7.2.1	Das Polynom der spezifischen Kraft und der Schnitt-							
			kraft	73						
		7.2.2	Der resultierende Kraftvektor	74						
		7.2.3	Lineare Regresionsschätzung der Zerspankraft	75						
		7.2.4	Lösen des Minimierungsproblems	76						
		7.2.5	Anwendung des Kraftmodells	77						
	7.3		chwingungsmodell	82						
		7.3.1	Das mechanische System	82						
		7.3.2	Das empirische Schwingungsmodell	84						
8			isierung von Mikrotopographien	85						
	8.1	Einleitung								
	8.2		dbegriffe für die Oberflächencharakterisierung	85						
		8.2.1	Die Traganteilkurve	87						
	8.3		lächenparameter nach DIN EN ISO 25178	88						
		8.3.1	Die Höhenparameter	89						
		8.3.2	Die räumlichen Parameter	90						

		8.3.4	Parameter für Funktionsoberflächen						
Ш	An	wend	lung	95					
9			g des Modells	96					
,	9.1	,	rung	96					
	9.2	Dae id	eale kinematische Profil	98					
	9.3								
	7.0			101					
		9.3.1	Phasenverschiebung ϕ_0						
		9.3.2	Schneidkantenversatz s_v						
		9.3.3	Rundlauffehler ρ						
		9.3.4	Deflektion δ der Werkzeugspitze						
	9.4	Die To	pographie der Vollnut und des Gegenlauffräsens .						
	9.5		nmenfassung						
			8						
10			identifikation und Verifikation der Textur	115					
	10.1		rung						
			Experimente						
			Bezeichnungen						
	10.2	Param	eteridentifikation zur Modellkalibrierung	117					
	10.3	Verifik	tation des kinematischen Oberflächenprofils	119					
			Daten Vor- und Nachbearbeitung						
			Ergebnisse						
	10.4		ation der Mikrotopographie						
			Daten Vor- und Nachbearbeitung						
			Ergebnisse						
	10.5	Fazit .		130					
11	Proz	essont	imierung	133					
		•	ung						
			ptimierungsparadigma						
			nisse						
			Kalibrierung und Validierung des Modells						
			Prozessoptimierung						
12	71160	ımmer	nfassung, Fazit und Ausblick	139					
12			nmenfassung						
			and Ausblick						
	14.4	ı azıt t	ma ruspiek	174					
Lite	Literaturverzeichnis								