
λογος

Thomas Eiter

Existence and Spatial Decay of
Periodic Navier-Stokes Flows

in Exterior Domains





Existence and Spatial Decay of
Periodic Navier–Stokes Flows

in Exterior Domains

Vom Fachbereich Mathematik
der Technischen Universität Darmstadt

zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)
genehmigte

Dissertation

von
Thomas Walter Eiter, M. Sc.

aus
Gelnhausen

Referent: Prof. Dr. Reinhard Farwig
1. Korreferent: Prof. Dr. Mads Kyed
2. Korreferent: Prof. Dr. Giovanni P. Galdi

Darmstadt 2020



Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;

detailed bibliographic data are available in the Internet at http://dnb.d-nb.de .

zugl.: Darmstadt, Technische Universität Darmstadt, Dissertation - D17

Tag der Einreichung: 12.12.2019

Tag der mündlichen Prüfung: 27.02.2020
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Abstract
Consider a rigid body that performs a prescribed motion through an infi-
nite container without boundaries that is filled with a viscous incompress-
ible fluid. The fluid flow around the body is governed by the Navier–Stokes
equations
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu + η ∧ u − (ξ + η ∧ x) ⋅ ∇u + u ⋅ ∇u = f +∆u −∇p in R ×Ω,
divu = 0 in R ×Ω,

u = ξ + η ∧ x on R × ∂Ω,
lim
∣x∣→∞

u(t, x) = 0 for t ∈ R.

(NSE)

Here Ω is the exterior of the body, u and p are velocity and pressure fields of
the fluid, and f is a given external force. Moreover, ξ and η describe (time-
dependent) translational and rotational velocities of the body. Object of
investigation of the present thesis is the configuration where the fluid flow
is time-periodic. The first part of this thesis is dedicated to the existence of
time-periodic solutions to (NSE), and the second part addresses spatially
asymptotic properties of such solutions.

In Chapter 3 we consider the case where the body performs a translation
with constant velocity and no rotation. The analysis is based on a suitable
linearization of (NSE) given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tu −∆u − λ∂1u +∇p = f in R ×Ω,
divu = 0 in R ×Ω,

u = 0 on R × ∂Ω
(LNSE)

for λ > 0. We establish new well-posedness results for both steady-state
and time-periodic strong solutions to (LNSE) in an exterior domain Ω ⊂
Rn, n ≥ 2, which are then employed to show existence of steady-state
and time-periodic solutions to the corresponding nonlinear system under
the assumption of “small” data. While solutions to these exterior-domain
problems are usually established in a framework of homogeneous Sobolev
spaces, the novelty of the presented approach is that it yields a framework
where solutions are established in a full Sobolev space.
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In Chapter 4 we study problem (NSE) in a three-dimensional exterior
domain Ω under suitable assumptions on the data. The associated lin-
earization is examined in a framework of absolutely convergent Fourier
series. Since the corresponding resolvent problem is ill-posed in classi-
cal Sobolev spaces, we establish a linear theory in homogeneous Sobolev
spaces. These new results are applied to obtain existence of time-periodic
solutions to the nonlinear system (NSE) for “small” data.

In Chapter 5 we investigate the linear problem (LNSE) in the whole
space Ω = Rn for general dimension n ≥ 2 and for general λ ∈ R, which
we formulate as a problem on the locally compact abelian group T ×Rn.
We introduce time-periodic fundamental solutions for the solution (u,p)
to these equations. In addition, we develop the concept of a time-periodic
fundamental solution for the vorticity field curlu. We investigate inte-
grability properties and show pointwise estimates of these fundamental
solutions.

The subject of Chapter 6 is the investigation of asymptotic properties of
time-periodic solutions to (NSE) in the case of non-vanishing mean trans-
lation velocity. The velocity field is decomposed into a time-independent
part and a time-periodic remainder, and we derive pointwise estimates for
these parts separately. In this way, new asymptotic properties of both the
velocity and the vorticity are discovered.
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Zusammenfassung in deutscher
Sprache
Man betrachte einen starren Körper, der eine vorgeschriebene Bewegung
durch einen unendlichen Behälter ohne Ränder, welcher mit einer viskosen
inkompressiblen Flüssigkeit gefüllt ist, vollzieht. Die Flüssigkeitsströmung
um den Körper ist bestimmt durch die Navier-Stokes-Gleichungen

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu + η ∧ u − (ξ + η ∧ x) ⋅ ∇u + u ⋅ ∇u = f +∆u −∇p in R ×Ω,
divu = 0 in R ×Ω,

u = ξ + η ∧ x auf R × ∂Ω,
lim
∣x∣→∞

u(t, x) = 0 für t ∈ R.
(NSG)

Hierbei sei Ω der Außenraum um den Körper, u und p seinen Geschwindig-
keitsfeld und Druckfunktion der Flüssigkeit und f sei eine gegebene äußere
Kraft. Des Weiteren beschreiben ξ und η die (zeitabhängige) Translations-
bzw. Rotationsgeschwindigkeit des Körpers. Der erste Teil dieser Arbeit
ist der Existenz von zeitperiodischen Lösungen von (NSG) gewidmet und
der zweite Teil befasst sich mit räumlich asymptotischen Eigenschaften
solcher Lösungen.

In Kapitel 3 betrachten wir den Fall, wenn der Körper eine Translation
mit konstanter Geschwindigkeit und keine Drehung vollzieht. Die Untersu-
chung basiert auf einer geeigneten Linearisierung von (NSG), die gegeben
ist durch

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tu −∆u − λ∂1u +∇p = f in R ×Ω,
divu = 0 in R ×Ω,

u = 0 auf R × ∂Ω
(LNSG)

für λ > 0. Wir beweisen neue Resultate zur Wohlgestelltheit, sowohl für
stationäre als auch für zeitperiodische starke Lösungen zu (LNSG), in ei-
nem Außenraum Ω ⊂ Rn, n ≥ 2, welche dann genutzt werden, um Existenz
von stationären und zeitperiodischen Lösungen des zugehöringen nichtli-
nearen Systems unter geeigneten Kleinheitsbedingungen an die Daten zu
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zeigen. Während Lösungen zu diesen Außsenraumproblemen üblicherwei-
se im Rahmen von homogenen Sobolev-Räumen bestimmt werden, ist die
Neuheit des vorgestellten Zugangs, dass er einen Rahmen liefert, in dem
Lösungen in vollen Sobolev-Räumen nachgewiesen werden.

In Kapitel 4 untersuchen wir Problem (NSG) im dreidimensionalen Au-
ßenraum Ω unter geeigneten Annahmen an die Daten. Das zugehörige
lineare Problem wird in Räumen absolut konvergenter Fourier-Reihen un-
tersucht. Da das zugehörige Resolventenproblem in klassischen Sobolev-
Räumen nicht wohlgestellt ist, leiten wir eine lineare Theorie in homoge-
nen Sobolev-Räumen her. Diese neuen Resultate werden angewandt, um
Existenz von zeitperiodischen Lösungen des nichtlinearen Systems (NSG)
für „kleine“ Daten zu zeigen.

In Kapitel 5 untersuchen wir das lineare Problem (LNSG) im Ganzraum
Ω = Rn für allgemeines λ ∈ R, was wir als Problem auf der lokalkompakten
abelschen Gruppe T ×Rn formulieren. Wir führen zeitperiodische Funda-
mentallösungen für die Lösungen (u,p) dieser Gleichungen ein. Zusätzlich
entwickeln wir das Konzept einer zeitperiodischen Fundamentallösung für
die Wirbelstärke curlu. Wir untersuchen Integrabilitätseigenschaften und
zeigen punktweise Abschätzungen dieser Fundamentallösungen.

Das Thema von Kapitel 6 ist die Untersuchung asymptotischer Ei-
genschaften von zeitperiodischen Lösungen von (NSG) im Falle nicht-
verschwindender mittlerer Translationsgeschwindigkeit. Das Geschwindig-
keitsfeld wird zerlegt in einen zeitunabhängigen Anteil und einen zeitpe-
riodischen Restterm, und wir leiten separate punktweise Abschätzungen
für diese beiden Anteile her. Hierdurch entdecken wir neue asymptotische
Eigenschaften sowohl des Geschwindigkeitsfelds als auch der Wirbelstärke.

viii
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1 Introduction

1.1 The Navier–Stokes Equations . . . . . . . . . . . 1
1.2 Time-Periodic Navier–Stokes Equations . . . . . 3
1.3 Flow Around a Moving Body . . . . . . . . . . . . 6

1.3.1 Flow Past a Non-rotating Body . . . . . . . . . 9
1.3.2 Flow Past a Rotating Body . . . . . . . . . . . 12
1.3.3 Asymptotic Behavior . . . . . . . . . . . . . . . 13

1.1 The Navier–Stokes Equations
Introduced in the first half of the nineteenth century, the Navier–Stokes
equations are still the most common way to model viscous incompressible
fluid flows. They describe the flow inside a region Ω ⊂ Rn during a time
interval I by the equations

{
∂tu + u ⋅ ∇u = f +∆u −∇p in I ×Ω,

divu = 0 in I ×Ω, (1.1)

where u∶ I × Ω → Rn denotes the Eulerian velocity field and p∶ I × Ω → R
the pressure field of the fluid. The function f ∶ I ×Ω → Rn denotes an ex-
ternal force. If Ω has a boundary, one usually adds appropriate boundary
conditions for u to system (1.1), and if Ω is unbounded, also a boundary
condition “at infinity”, that is, a value for lim∣x∣→∞ u, is included. The
mathematical challenge consists of showing existence of solutions (u,p) to
(1.1) and the investigation of their properties.

For simplicity, the viscosity and density constants are set to 1. While
from a physical perspective only the case of a domain Ω in two or three
dimensions seems relevant, mathematically, there is no reason not to for-
mulate and study these equations in an n-dimensional domain Ω ⊂ Rn for
n ≥ 2.
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1 Introduction

The mathematical examination of the Navier–Stokes equations is mostly
carried out in one of three different frameworks. By including an initial
condition u(t0, x) = u0(x) at a time t0 ∈ I to problem (1.1), one obtains the
corresponding initial-value problem. By restriction to time-independent
quantities, one obtains the corresponding steady-state problem. Moreover,
one can examine the time-periodic problem, where the involved functions
exist on the whole time axis I = R and are periodic with respect to the
time variable. The investigation of this latter case is subject of the present
work.

Although being so different in their formulation, there exist many con-
nections between these three types of problems. For instance, both steady-
state and time-periodic solutions appear as equilibrium states of the evo-
lution equation and thus as “limits” t → ∞ of solutions to the initial-
value problem. Another example are Hopf bifurcations, where the initially
steady-state flow abruptly becomes time periodic. This phenomenon can
be observed in physical experiments, for example, in the fluid flow past a
body.

For the mathematical study of time-periodic solutions, it seems natu-
ral to treat them as specific solutions to the initial-value problem. Based
on this idea, many mathematical concepts for the examination of time-
periodic partial differential equations have been developed. Generally,
time-periodic solutions found this way intrinsically have the same func-
tional properties as solutions to the initial-value problem. In some set-
tings this framework is not optimal to capture the functional properties
of steady-state solutions. However, every steady-state solution is trivially
also time periodic, which is why these should be included. For example,
the steady-state flow past a body and the solution of the corresponding
initial-value problem show very different behavior.

The study of a time-periodic problem as a particular initial-value prob-
lem has become very common in nowadays analysis. An overview of
these methods is given below. Nevertheless, we use a different approach
here that naturally includes the characteristics of the steady-state prob-
lem. The idea is based on the observation that a time-periodic function
can be decomposed into the time mean over one period, which is time-
independent and called steady-state part, and a second purely periodic
part. The two parts can be investigated separately and, as is suggested
by physical observations, possess different characteristic properties. While
the steady-state part satisfies a time-independent problem and can be han-
dled by classical methods, we investigate the purely periodic part with
methods from the theory of Fourier analysis on groups. For this pur-
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1.2 Time-Periodic Navier–Stokes Equations

pose, we model T -time-periodic functions by means of the torus group
T = R/T Z. This group naturally inherits a topology and a differentia-
bility structure from R, so that system (1.1) is equivalently formulated
as

{
∂tu + u ⋅ ∇u = f +∆u −∇p in T ×Ω,

divu = 0 in T ×Ω. (1.2)

The main advantage of this reformulation is that convolution and Fourier
transform are available in this setting and the time periodicity is naturally
included in the functional framework.

1.2 Time-Periodic Navier–Stokes Equations
While the foundation of the modern mathematical investigation of the
Navier–Stokes equations can be dated back to the 1930s and the pioneering
works of Leray [78, 79], who established existence of weak solutions to the
steady-state and the initial-value problem, the investigation of the time-
periodic Navier–Stokes equations began much later, initiated by Serrin
[96] in the late 1950s.

It is remarkable that the study of general time-periodic partial differen-
tial equations started only some years earlier. By contemporary standards,
the first mathematically rigorous contribution in this respect is due to
Prodi [88] in the 1950s, who studied the time-periodic one-dimensional
heat equation. Not much later, there appeared articles concerning the
time-periodic wave equation [89, 34]. These papers can be seen as the
basis on which more involved techniques were developed through the sub-
sequent years.

Let us give a brief overview of the most common methods for the investi-
gation of time-periodic differential equations and their first applications to
the Navier–Stokes equations. To this end, consider the abstract evolution
equation

{
∂tu +Au = F (t, u) in R,
u(t + T ) = u(t), (1.3)

where A is a linear (differential) operator on a Banach space X, and the
(nonlinear) right-hand side F as well as the solution u are assumed to be
T -periodic for some prescribed period T .

Probably, the most popular way to show existence of a solution to (1.3)
is by means of fixed points of the so-called Poincaré operator. This opera-
tor maps a given initial value u0 to the value u(T ) at time T of a solution

3



1 Introduction

u to the initial-value problem

{
∂tu +Au = F (t, u) in (0,∞),

u(0) = u0.
(1.4)

This operator was introduced by Poincaré [86, 87], who considered it in
the context of dynamical systems. Obviously, if u0 is a fixed point of this
mapping, then the solution u to (1.4) is T -time-periodic and thereby also
a solution to (1.3). In order to apply this procedure, the main challenge
is to find a setting of Banach spaces such that the Poincaré operator is
well defined and to ensure the existence of a fixed point. The first rigorous
applications of this approach to investigate time-periodic differential equa-
tions directly in the infinite-dimensional framework go back to Browder
[8], Krasnosel’skiĭ [70] and Kolesov [65, 66, 67].

In order to circumvent the more difficult analysis in infinite-dimensional
spaces, one can combine this approach with classical energy methods and
construct time-periodic solutions via a Galerkin approximation. In this
way, one reduces (1.3) to a problem in a finite-dimensional setting and thus
to an ordinary differential equation. In this framework, it is much easier
to ensure the existence of a fixed-point of the corresponding Poincaré op-
erator. The idea to use a Galerkin method in the field of time-periodic
Navier–Stokes equations goes back to Yudovich [103] and Prodi [90].
However, their papers do not contain rigorous mathematical proofs. While
the first application of the Galerkin method in the framework of the
Navier–Stokes equations is due to Hopf [60], who constructed solutions
to the initial-value problem, Prouse [91, 92] connected this idea with the
concept of the Poincaré operator to obtain time-periodic solutions.

Classically, by techniques from nonlinear functional analysis, one can
obtain solutions to the nonlinear problem (1.3) from a suitable theory of
the linear case where F (t, u) = F (t), which can be investigated by means
of the Poincaré operator as well. A different and more explicit approach
is based on a specific representation formula for the solution. When the
linear operator A is generator of a semi-group with suitable properties,
one can establish the solution formula

u(t) =
t

∫
−∞

e−(t−τ)AF (τ)dτ. (1.5)

One readily verifies that u is time periodic of the same period as F if u is
formally given by (1.5). Similarly to the approach based on the Poincaré
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1.2 Time-Periodic Navier–Stokes Equations

operator, the difficulty is to find a suitable functional framework such that
this representation formula is well defined. Prodi [88] was the first to
investigate time-periodic partial differential equations by this method. In
the study of time-periodic Navier–Stokes equations, the solution formula
(1.5) was employed by Kozono and Nakao [69] and Yamazaki [102].

A different and more implicit method is to show that a solution u to the
initial-value problem (1.4) tends to a periodic orbit as t → ∞. Then the
sequence (un) defined by un(t) ∶= u(t + nT ) tends to a periodic solution
to (1.3) as n→∞. This idea was first applied for general partial differen-
tial equations by Ficken and Fleishman [34], and Serrin [96] initially
proposed this method for the study of time-periodic Navier–Stokes equa-
tions. The first rigorous application in this field is due to Kaniel and
Shinbrot [63], who showed existence of strong solutions in bounded do-
mains for “small” data. Takeshita [99] extended their result to data of
general “size” in the case of two dimensions.

The most classical way to study time-periodic problems is surely by
a Fourier expansion in time, or equivalently, if we model time-periodic
functions as functions on T, by means of the Fourier transform on T.
In the linear case, the Fourier modes of the solution satisfy associated
resolvent problems, which are partial differential equations only in spatial
variables. This method has been applied by many researchers; see [89, 13,
93, 94, 58, 7] for example. The main difficulty is to transfer the a priori
estimates, which are crucial to solve the original nonlinear problem, from
the resolvent problems to the linearized time-periodic problem. Typically,
this is only possible in two situations. On the one hand, one can use
Plancherel’s theorem to conclude estimates of the time-periodic solution
in the space L2(T;X), which is only possible if the underlying space X is
a Hilbert space. On the other hand, one can establish estimates within a
space of absolutely convergent Fourier series A(T;X), where all functions,
in particular, the given data, are intrinsically continuous in time. One
advantage of such a framework is that one can capture properties of each
single Fourier mode specifically, which is why we employ this method in
Chapter 4, where a time-periodic problem is examined in the spaces of
the type A(T;X).

A recent approach to overcome the restriction to this kind of spaces
is due to Eiter, Kyed and Shibata [23]. As uniform boundedness of
the resolvent in the underlying space X is not sufficient to obtain a pri-
ori estimates for the time-periodic problem in the general Banach spaces
Lp(T;X), they use the more restrictive notion of R-boundedness which,
in the end, is sufficient in this respect. In the last years, the concept of
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1 Introduction

R-boundedness has become popular in the study of initial-value problems,
and the article aims at directly transferring these results to the context of
time-periodic problems. This approach can also be seen as an extension
of the vector-valued multiplier theorems due to Weis [101] and Arendt
and Bu [4].

Another approach recently developed by Galdi [43, 44] and Kyed
[72, 73, 74] relies on a suitable decomposition of the time-periodic solu-
tion into two independent parts. The steady-state part is a solution to
the corresponding steady-state problem, which can be treated by classical
methods. The purely periodic part can be investigated separately and thus
in a completely different functional framework. As we observe in Chapter
3, the investigation of the purely periodic part can usually be achieved
in a functional framework with simpler structure than that of the steady-
state part. Moreover, the steady-state and purely periodic parts usually
show different decay and integrability properties. This characteristic also
appears in our analysis in Chapter 5 and Chapter 6. In this respect, the
decomposition allows to appropriately capture the physical properties of
the investigated system. Note that this method has also found applica-
tion in other fields besides fluid dynamics. For example, it was employed
by Kyed and Celik [11, 12] in order to study damping effects in dif-
ferent nonlinear wave equations, and by Ibrahim, Lemarié-Rieusset
and Masmoudi [61] in the investigation of time-periodic solutions to the
Navier–Stokes–Maxwell equations.

1.3 Flow Around a Moving Body
The focus of the present work lies in the investigation of time-periodic
flow around a rigid body B that performs a prescribed motion through a
Navier–Stokes liquid. In this case the region of flow depends on time, that
is, Ω = Ω(t). In view of (1.1), the Navier–Stokes flow is then described by
the equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu + u ⋅ ∇u = f +∆u −∇p in ⋃
t∈I
{t} ×Ω(t),

divu = 0 in ⋃
t∈I
{t} ×Ω(t),

u = UB on ⋃
t∈I
{t} × ∂Ω(t),

lim
∣x∣→∞

u(t, x) = 0 for t ∈ I.

(1.6)

6



1.3 Flow Around a Moving Body

Here UB describes the velocity of the boundary of the body B. Hence,
condition (1.6)3 means that the fluid particles adhere to the body B at
the boundary. Moreover, (1.6)4 means that the fluid flow is at rest “at
infinity”.

Observe that it is also possible to prescribe a non-vanishing (time-
dependent) velocity u∞ at infinity by replacing equation (1.6)4 with the
condition lim∣x∣→∞ u(t, x) = u∞(t). However, by a simply change of coor-
dinates, this merely corresponds to an additional translational velocity of
the body B, so that this case is included in the above description.

Instead of a description of the flow in an inertial frame as in (1.6), it
is often convenient to change coordinates and to describe the problem in
a frame attached to the body B. In the three-dimensional case, one can
express (1.6) in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu + η ∧ u − η ∧ x ⋅ ∇u − ξ ⋅ ∇u + u ⋅ ∇u = f +∆u −∇p in R ×Ω,
divu = 0 in R ×Ω,

u = ξ + η ∧ x on R × ∂Ω,
lim
∣x∣→∞

u(t, x) = 0 for t ∈ R,
(1.7)

where Ω is the exterior of the body B; see [41] for example. Here ξ
and η correspond to (possibly time-dependent) translational and angular
velocity of the rigid motion of the body B. Since we study time-periodic
solutions, we have replaced the time axis I by R. Both physical and
mathematical observations show that properties of the fluid flow strongly
depend on ξ and η, which is why the investigation is usually carried out
for different cases separately. Note that in the absence of rotation, the
parameter η vanishes, and (1.7) is a proper description of the fluid flow in
any dimension n ≥ 2.

Observe that the domain in (1.7) is an unbounded exterior domain
Ω ⊂ Rn. While the results listed above mostly concerned the study of
the flow in bounded domains, a proof of the existence of strong time-
periodic solutions to the Navier–Stokes equations in unbounded domains
was achieved in the 1990s by Maremonti [81, 82] and extended by
Maremonti and Padula [83] in the case ξ = η ≡ 0. Their result was
complemented by a different proof by Kozono and Nakao [69] based on
the representation formula (1.5), but they could not treat the case of a
three-dimensional exterior domain. A short time later this case was cov-
ered by Yamazaki [102], who could show existence in the framework of so-
called mild solutions in a framework of weak Lp spaces, and subsequently
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by Galdi and Sohr [38], who showed existence of strong time-periodic
solutions in spatially weighted spaces.

While all these works only examine the case ξ = η ≡ 0, that is, the
time-periodic flow around a body at rest, the case of a moving body has
attracted less attention. The first investigation in this respect is due to
Galdi and Silvestre [53], who showed existence of weak solutions for
time-periodic data ξ, η and f . They further developed these results to
the case of a freely moving body in [54]. These results were established
in a Hilbert-space framework based on energy methods. One drawback of
this framework is that it does not allow to capture asymptotic properties
of the velocity field. Therefore, an investigation of the problem in an Lp

setting for p ≠ 2 is required.
From a physical point of view, it is reasonable to introduce

λ ∶= ∣ 1T

T

∫
0

ξ dt∣, (1.8)

which is the modulus of the time mean of the translational velocity ξ,
and to distinguish the cases λ = 0 and λ ≠ 0. If λ = 0, then the body B
oscillates around a prescribed point in space, and if λ ≠ 0, it performs a
proper translation. The parameter λ has significant impact on the physi-
cal properties of the described flow. One difference can be observed in the
asymptotic behavior of the flow. For λ ≠ 0 there is a wake region “behind”
the body, which does not exist for λ = 0. In this respect, it seems rea-
sonable to also distinguish these cases in the mathematical investigation.
Since the case λ ≠ 0 is equivalent to the configuration where the body
oscillates at a prescribed place and the velocity “at infinity” is prescribed
by lim∣x∣→∞ u(t, x) = −λ e1, the case λ ≠ 0 is also called the time-periodic
flow past a body, in contrast to the case λ = 0, the flow around a body.

The case of a flow past a non-oscillating and non-rotating body, that
is, the case ∣ξ∣ ≡ λ ≠ 0 and η = 0, was examined by Kyed [73, 74], who
showed existence of time-periodic solutions in a framework of Lp spaces.
The same case was treated by by Galdi [43, 44] in two dimensions. Both
used the method of decomposing the time-periodic solution into a steady-
state and a purely periodic part. Furthermore, Galdi and Kyed [50]
showed existence of time-periodic solutions in three-dimensional exterior
domains for the problem of a flow past an oscillating body, that is, the case
of time-periodic ξ with λ ≠ 0 and η = 0. Moreover, Galdi [47] recently
proved existence of solutions to the problem of time-periodic flow around
an oscillating body, that is, the case of time-periodic ξ with λ = 0, in
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1.3 Flow Around a Moving Body

spatially weighted function spaces. However, these papers always consider
the case η = 0 of a non-rotating body. Following a completely different
approach, Geissert, Hieber and Nguyen [55] established the existence
of mild solutions to the problem of time-periodic flow past a rotating body,
where both ξ and η are time-independent and parallel.

1.3.1 Flow Past a Non-rotating Body
Chapter 3 is concerned with the case of time-periodic flow past a body
that performs a purely translational motion, that is, the case of constant
translational velocity ξ ≠ 0 and vanishing angular velocity η = 0. By
choosing the coordinate system appropriately, we may assume ξ = λ e1 for
some λ > 0. Our analysis of time-periodic solutions to (1.6) is mainly based
on the investigation of the associated linear system. As explained above,
for a prescribed time period T > 0 we model T -time-periodic functions as
functions on the torus group T = R/T Z. Then the linearization of (1.7) is
given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tu −∆u − λ∂1u +∇p = f in T ×Ω,
divu = 0 in T ×Ω,

u = 0 on T × ∂Ω
(1.9)

for a right-hand side f ∶T ×Ω → Rn. Observe that we omitted the bound-
ary condition lim∣x∣→∞ u(t, x) = 0 “at infinity” in this formulation. Since
we search for solutions (u,p) such that u(t, ⋅) ∈ Lq(Ω) for some q ∈ (1,∞),
the velocity field u is intrinsically subject to this condition in a general-
ized sense. We call (1.9) the time-periodic Stokes problem if λ = 0, and
the time-periodic Oseen problem if λ ≠ 0. We follow the approach by
Galdi and Kyed and decompose problem (1.9) into two separate prob-
lems, which can be examined independently. To this end, we introduce
the projection operators

Pf ∶= 1

T

T

∫
0

f dx, P� = Id−P.

Then Pf is the time mean of the function f and a time-independent func-
tion, and f = Pf + P�f is decomposed into steady-state part and Pf and
purely periodic part of P�f . By means of these projectors, we decompose
all functions in (1.9) and define

v ∶= Pu, w ∶= P�u, p ∶= Pp, q ∶= P�p, g ∶= Pf, h ∶= P�f.

9
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In this way, (1.9) is separated into two systems, namely

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆v − λ∂1v +∇p = g in Ω,

div v = 0 in Ω,

v = 0 on ∂Ω.

(1.10)

and
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tw −∆w − λ∂1w +∇q = h in R ×Ω,
divw = 0 in R ×Ω,

w = 0 on R × ∂Ω.
(1.11)

In analogy to before, if λ = 0, we call these equations the steady-state and
purely periodic Stokes problems, and if λ ≠ 0, we call them the steady-
state and purely periodic Oseen problems. Though looking quite the same
at first glance, the main difference between (1.9) and (1.11) is that in
the latter there appear only purely periodic functions. The advantage of
this decomposition is that one can now search for functional frameworks
that render (1.10) and (1.11) well posed independently of each other. By
combination, one then obtains a comprehensive solution theory for the
original time-periodic problem (1.9).

As mentioned above, the fluid flow shows different physical properties
depending on the parameter λ, which is called Reynolds number. Whether
λ = 0 or λ ≠ 0, also has impact on the analysis of the linear problem (1.9),
and the functional analytic properties differ significantly. However, as a
further investigation shows, this discrepancy is only due to the steady-
state part and one can establish a solution theory for the purely periodic
problem (1.11) that is uniform in λ. In particular, as in the case of steady-
state flow, the linear solution theory in an Lq framework is sufficient for
the treatment of the nonlinear problem (1.1) by a fixed-point argument;
see [73]. In contrast, for λ = 0 one obtains different function spaces and
the nonlinear problem cannot be treated in this manner. In the present
work, we therefore focus on the case of non-vanishing Reynolds number
λ ≠ 0, that is, the case of flow past a body.

As explained before, our approach to the time-periodic linear problem
(1.9) requires an appropriate theory for strong solutions to its steady-
state counterpart (1.10), which can be regarded as a special case. The
first fundamental contribution in this regard is due to Galdi [40], who
established frameworks of well-posedness for weak and strong solutions to
the steady-state problem (1.10). An overview and further articles can be
found in [42, Chapter VII], the more recent paper [2] and the references

10



1.3 Flow Around a Moving Body

therein. As the investigation of (1.10) shows, for general g ∈ Lq(Ω) with
suitable q ∈ (1,∞) the corresponding velocity-field solution merely satisfies

∇2v ∈ Lq(Ω), ∇v ∈ Ls1(Ω), v ∈ Ls2(Ω)

for different values q < s1 < s2, but v is not an element of the full Sobolev
space W2,q(Ω). In contrast, the velocity-field solution w to the purely
periodic linear problem (1.11) shows a completely different behavior and
belongs to the full Sobolev space W2,q(Ω) with respect to the spatial
variable. Combining these two results, one concludes well-posedness of
the complete time-periodic problem (1.9) in a functional framework that
is suitable to show existence of a solution to the nonlinear problem (1.7)
in three-dimensional exterior domains; see [50].

In Chapter 3 we derive a different solution theory for the time-periodic
problem (1.9). While the purely periodic velocity field w belongs to the
same space as in [50], the novelty of the presented approach is the con-
struction of a framework that ensures the steady-state solution v to be-
long to the full Sobolev space W2,q(Ω) as well. In consequence, we also
obtain a velocity-field solution u to the time-periodic system (1.9) that
is an element of W2,q(Ω) with respect to space. From this result, we fi-
nally conclude existence of steady-state and time-periodic solutions to the
Navier–Stokes problem (1.7) with ξ = λ e1 ≠ 0 and ω ≠ 0 such that the
velocity field belongs to this full Sobolev space. The results of Chapter 3
were published by Eiter and Galdi [19].

This investigation in Chapter 3 is motivated by recent research on time-
periodic bifurcations by Galdi [46, 45], who studied Hopf bifurcations in
the context of the flow past a body, which were established in a framework
where the steady-state part of the solution merely belongs to homogeneous
Sobolev spaces as described above. We assume that the results presented
here allow to study these Hopf bifurcation as well as secondary bifurcations
in a framework of full Sobolev spaces and to make them accessible for
techniques typically used in bounded domains. The mathematical proof
of secondary bifurcation for fluid flow problems in exterior domains is still
an open problem to date.

Observe that the occurrence of Hopf bifurcations is one of the most nat-
ural appearances of time-periodic flows in physics. While Galdi studied
bifurcations that occur in the flow past a body, another example is the
spontaneous oscillation of a falling drop when its falling velocity exceeds
a specific value. The mathematical examination of this phenomenon has
recently been initiated by Eiter, Kyed and Shibata, who established
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an appropriate framework for the existence of steady-state solutions [24]
and investigated existence of solutions to the corresponding time-periodic
problem in bounded domains [25].

1.3.2 Flow Past a Rotating Body
The subject of Chapter 4 is the time-periodic flow past a rotating body
in the three-dimensional whole space. More precisely, we consider sys-
tem (1.6) in the case of a time-periodic translation velocity ξ with time
average λ ≠ 0 and a non-vanishing angular velocity η. We assume that
the translation velocity ξ and the external force f are time periodic with
coincident period T > 0, that is,

ξ(t + T ) = ξ(t), f(t + T , x) = f(t, x).

Moreover, we assume that the axis of translation does not vary over time
and coincides with the rotational axis, and that, without loss of generality,
both are directed along the x1-axis. This means

ξ(t) = α(t) e1, η = ω e1 (1.12)

for some prescribed T -periodic function α∶R → R and a constant ω ∈
R ∖ {0}.

We further assume that the body performs a proper translation such
that after one period its center of mass has changed its location. Expressed
differently, we assume the mean translational velocity of the body over one
time period to be non-zero:

λ ∶= 1

T

T

∫
0

α(t)dt ≠ 0. (1.13)

Observe that this parameter λ coincides with λ defined in (1.8) provided
λ > 0, which we may assume without loss of generality. In view of these
specifications, the linearization of (1.7) is given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tu + ω(e1 ∧u − e1 ∧x ⋅ ∇u) −∆u − λ∂1u +∇p = f in T ×Ω,
divu = 0 in T ×Ω,

u = 0 on T × ∂Ω.
(1.14)

Here the parameter λ plays the same role as discussed above, and physical
and mathematical properties heavily depend on whether or not (1.13) is
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1.3 Flow Around a Moving Body

satisfied. In particular, the case λ = 0 would require different techniques
and a different functional framework, which is why it is not considered
here. In the case λ ≠ 0, problem (1.14) is called the time-periodic gener-
alized Oseen problem.

Observe that, since we consider the case ω ≠ 0 of a proper rotation,
the term ω e1 ∧x ⋅ ∇ appearing in (1.14) does not vanish and is a differ-
ential operator with unbounded coefficient. Therefore, even for “small”
η, problem (1.14) cannot be treated as a lower-order perturbation of the
time-periodic Oseen problem (1.9). Moreover, we find that the analysis of
the corresponding resolvent problem requires a completely different func-
tional setting. In order to find a framework that renders the time-periodic
generalized Oseen problem (1.14) well posed, we make use of the fact that
the term η ∧ x ⋅ ∇ stems from a change of coordinates into a frame at-
tached to the body and can be dealt with by the reversed transform. This
idea was also employed by Galdi and Kyed [49, 48] to investigate the
the steady-state problem corresponding to (1.7). However, in the time-
periodic framework, this method only yields suitable estimates when the
change of coordinates maintains the time periodicity of the involved func-
tions. Observe that this is the case if the angular velocity ω of the rotation
of the body coincides with an integer multiple of the angular frequency
2π/T of the time-periodic data. For the sake of simplicity, we assume

ω = 2π/T . (1.15)

This assumption means that after one time period the rigid body com-
pleted one full revolution. Regarding the body rotation as a second time-
periodic external forcing mechanism, one may interpret (1.15) as the con-
dition that this mechanism has to be compatible to the time-periodic data.
In the end, we show existence of a time-periodic solution to (1.7) under
the assumptions (1.12), (1.13) and (1.15). These results were published
in [22].

1.3.3 Asymptotic Behavior
The second main topic of the present work is the analysis of the asymp-
totic behavior of a time-periodic fluid flow surrounding a moving obstacle,
which is governed by the Navier–Stokes equations (1.6). From information
on the asymptotic properties of the flow one can directly conclude physical
properties. For example, the anisotropic nature of the derived estimates
hints at the occurrence of a wake region “behind” the body. Moreover,
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these estimates show that the purely periodic part of both the velocity
and the vorticity field decay faster than the corresponding steady-state
part, so that the characteristics of the far field of a time-periodic flow are
the same as observed for steady-state flows.

One classical approach to study asymptotic properties is by means of a
fundamental solution. While for the steady-state linearized Navier–Stokes
problem (1.10) fundamental solutions are known for many decades and go
back to Lorentz [80] and Oseen [85], corresponding results for the time-
periodic linearized Navier–Stokes problem

{
∂tu −∆u − λ∂1u +∇p = f in T ×Rn,

divu = 0 in T ×Rn,
(1.16)

were introduced by Kyed [76] and Galdi and Kyed [51] very recently
in dimension n = 3. The subject of Chapter 5 is an extension of their
results to general dimension n ≥ 2, which was published by Eiter and
Kyed [21]. Moreover, we introduce a fundamental solution associated to
the vorticity field of time-periodic linearized Navier–Stokes flow (1.16) in
n = 3 dimensions.

One notable property of these time-periodic fundamental solutions is
that they are also subject to the decomposition explained above and can
be identified as the sum of a steady-state part, which coincides with the
fundamental solution to the respective steady-state problem, and a purely
periodic part, which possesses better properties in terms of decay and
integrability. Since the steady-state problem is a special case of the time-
periodic problem, it is no surprise to recover the steady-state fundamental
solution in the time-periodic framework.

Because we formulated the time-periodic whole-space problem (1.16)
as a problem in the locally compact abelian group G = T × Rn, where
a Fourier transform is available, the second, purely periodic part can be
identified in terms of a Fourier multiplier on this group. This enables us
to investigate time-periodic fundamental solutions by means of Fourier
analytic methods in the group G. In particular, we establish integrability
properties and pointwise estimates, which are subsequently employed to
study asymptotic properties of time-periodic flows.

As in the case of a steady-state flow, the fundamental solution associated
to the velocity u in (1.16) shows a polynomial decay, and the decay rate of
the fundamental solution associated to the vorticity curlu is of exponential
type. Remarkably, while in the case λ ≠ 0 the decay rate of the steady-
state part is anisotropic and decays faster outside a wake region, the purely
periodic part behaves differently and decays homogeneous in space.
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1.3 Flow Around a Moving Body

The properties established for the fundamental solutions allow to ana-
lyze the asymptotic structure of time-periodic flow. Recall that the case
of a steady-state Navier–Stokes flow, described by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

η ∧ u − η ∧ x ⋅ ∇u − ξ ⋅ ∇u + u ⋅ ∇u = f +∆u −∇p in Ω,

divu = 0 in Ω,

u = ξ + η ∧ x on ∂Ω,

lim
∣x∣→∞

u(x) = 0,

(1.17)

can be regarded as a special case of a time-periodic flow. The mathemati-
cal analysis of the asymptotic behavior of solutions to (1.17) can be dated
back to Finn [36], who showed that the asymptotic profile of the velocity
field u of the flow past a (non-rotating) body, which means ξ ≠ 0 and
η = 0, is dominated by that of the steady-state Oseen fundamental solu-
tion. Later Babenko [5] extended this result to weak solutions. However,
his proof had gaps and was finally completed by Galdi [39]. Later, Kyed
[75] obtained an analogous result in the case of the flow past a rotating
body. The asymptotic structure of the associated vorticity field curlu was
identified by Clark [14] and Babenko and Vasil’ev [6] in the case of
a Navier–Stokes flow past a non-rotating body. Their result was recently
extended to the case of a rotating body by Deuring and Galdi [17].

In the case ξ = η = 0, that is, the case of the flow around a body at
rest, an asymptotic expansion for the velocity field was established by
Korolev and Šverak [68], under the assumption of “small” data. They
identified the corresponding leading term as a so-called Landau solution
of the Navier–Stokes equations. If the body performs only a rotation but
no translation, that is, if ξ = 0 and η ≠ 0, Farwig and Hishida [29] and
Farwig, Galdi and Kyed [28] established similar expansions with the
same leading terms.

Concerning the time-periodic case, which is described by time-periodic
solutions to (1.7), Kang, Miura and Tsai [62] recently derived an asymp-
totic expansion for the velocity field u for flow around a body at rest, that
is, in the case ξ = η = 0. For the flow past a non-rotating body, that is,
in the case of constant translational velocity ξ ≠ 0 and vanishing angu-
lar velocity η = 0, an asymptotic expansion was established by Galdi and
Kyed [51]. In both results the asymptotic profile of the time-periodic flow
coincides with that of the corresponding steady-state problem described
above.

In Chapter 6 we further investigate the case of flow past a body. More
precisely, in the final result, the mean translational velocity ξ is allowed to
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be time dependent with non-vanishing time mean λ defined in (1.8). Be-
ginning with the asymptotic expansion established in [51], we employ the
time-periodic fundamental solutions from Chapter 5 to derive pointwise
estimates of the velocity field u and its gradient ∇u of a solution (u,p) to
(1.7). Subsequently, we examine the corresponding vorticity field curlu
by means of an integral representation via the associated fundamental
solution.

One of our main observations in Chapter 5 is that the steady-state parts
of all investigated time-periodic fundamental solutions decay slower than
the associated purely periodic parts. Our findings in Chapter 6 show that
the velocity and vorticity corresponding to a time-periodic Navier–Stokes
flow have similar properties, and we observe that the steady-state parts
of both the velocity and vorticity fields decay slower than the respective
purely periodic parts.
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In this chapter, we prepare the notation used throughout the present
thesis as well as some preliminary results. After introducing the basic no-
tation and function spaces, we present some results from harmonic analysis
on groups. For a more detailed introduction to this topic, we refer to [95].
Subsequently, we introduce the notation for Sobolev spaces together with
frequently used inequalities. Finally, we collect some preliminary results
from mathematical fluid dynamics. Most of the presented results can be
found in [42].
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2 Preliminaries

2.1 Basic Notation
In this section we prepare the basic notation concerning number sets,
vector analysis and function spaces.

2.1.1 Sets of Numbers
The symbol N denotes the set of natural numbers, that is, the set of
positive integers. We set N0 ∶= N∪{0}, and let Z, R and C denote the sets
of integers and real and complex numbers, respectively. Usually, elements
in R×Rn are denoted by (t, x), and consist of a time variable t and a spatial
variable x. For the sign of a real number x ∈ R we write sgn(x), and the
argument of a complex number z ∈ C ∖ {0} is denoted by arg z ∈ (−π,π],

For n ∈ N let α = (α1, . . . , αn) ∈ Nn
0 and β = (β1, . . . , βn) ∈ Nn

0 be multi-
indices. Then we set ∣α∣ = α1 + ⋅ ⋅ ⋅ + αn. The notation α ≤ β means αj ≤ βj
for all j = 1, . . . , n.

When considering a number a > c for c ∈ R, we implicitly assume that a
is real if not indicated otherwise. However, there is one exception of this
rule: If a is replaced by the letter n, that is, when considering n > c for
some c ∈ R, we implicitly assume that n ∈ N.

The set {e1, . . . en} denotes the standard basis of Rn and Cn. Then
ej ⋅ ek = δjk, where δjk denotes the Kronecker delta. Let x = (x1, . . . , xn)
and y = (y1, . . . , yn) be elements of Rn or Cn. We denote the Euclidean
norm of x by

∣x∣ ∶=
√
∣x1∣2 + ⋅ ⋅ ⋅ + ∣xn∣2,

and for the (real) Euclidean scalar product we write x ⋅ y ∶= xjyj. Here
and in the following we use the Einstein summation convention, that is, in
products we implicitly sum over repeated indices from 1 to n. Similarly,
for matrices A = (Ajk), B = (Bjk) ∈ Cn×n the scalar product is denoted by
A ∶ B ∶= AjkBjk. Moreover, the tensor product x ⊗ y ∈ Cn×n of x and y is
given by (x ⊗ y)jk = xjyk. The vector product x ∧ y ∈ C3 of x, y ∈ C3 is
defined by (x∧y)j = εjk`xky`, where εjk` is the Levi-Civita symbol defined
by

εjk` ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if (j, k, `) is an even permutation of (1,2,3),
−1 if (j, k, `) is an odd permutation of (1,2,3),
0 otherwise.

Moreover, if z ∈ C3 is a third vector, we set x ∧ y ⋅ z ∶= (x ∧ y) ⋅ z.
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2.1 Basic Notation

For R > 0 and x ∈ Rn we let BR(x) ∶= {y ∈ Rn ∣ ∣x − y∣ < R} denote the
ball of radius R centered at x, and BR(x) ∶= {y ∈ Rn ∣ ∣x − y∣ > R} is the
interior of its complement. For x = 0 we simply write BR ∶= BR(0) and
BR ∶= BR(0). Moreover, ωn denotes the surface area of unit sphere in Rn.
For Ω ⊂ Rn we define ΩR ∶= Ω ∩BR and ΩR ∶= Ω ∩BR.

A set Ω ⊂ Rn is called a domain if it is a non-empty, open, connected
subset of Rn. We call Ω a bounded domain if it is contained in a ball BR for
some radius R > 0, and an exterior domain if it is the complement of the
closure K of a bounded domain in Rn. In the latter case, δ(Ωc) denotes
the diameter of K. Without loss of generality, we make the technical
assumption that 0 belongs to the interior of K.

If the (compact) boundary of Ω can locally be represented as the graph
of a Lipschitz continuous function, we say that Ω has Lipschitz boundary
or that it is a Lipschitz domain. If it can locally be represented by the
graph of a function that is k-times continuously differentiable, k ∈ N, we
call Ω a domain of class Ck, a domain with Ck-boundary or a Ck-domain.

Spatial derivatives of a sufficiently regular function u on a domain Ω ⊂
Rn are denoted by ∂ju = ∂xj

u for j = 1, . . . , n, and ∇u ∶= (∂1u, . . . , ∂nu)
denotes the gradient of u. We set Dαu ∶= Dα

xu ∶= ∂α1
1 . . . ∂αn

n u for α ∈ Nn
0 ,

and the symbol ∇ku = (Dαu ∣α ∈ Nn
0 , ∣α∣ = k) denotes the formal collection

of all derivatives of order k ∈ N. Moreover, ∆u = ∂j∂ju defines the Laplace
operator. If u = (u1, . . . , un) is Rn-valued, these differential operators act
on u componentwise. Moreover, divu = ∂juj denotes the divergence of u.
If v is another Rn-valued function on Ω, then u ⋅ ∇v is the vector-valued
function defined by (u ⋅∇v)j = uk∂kvj. We further let curlu denote the curl
or rotation of an R3-valued vector field u, that is, (curlu)j = εjk`∂ku`. For
a second-order tensor field T ∶Rn → Rn×n the vector field divT is defined
by (divT )j ∶= ∂kTjk. Unless indicated otherwise, these operators always
act on the spatial variables x, also in the case when u further depends on
time. In this case, ∂tu denotes its time derivative.

We use capital letters to denote global constants, which are numbered
consecutively throughout the complete thesis, and we use small letters to
denote local constants, which are numbered in the respective proof. In
order to emphasize that a constant C depends on quantities α,β, γ, . . . ,
we write C = C(α,β, γ, . . . ).

2.1.2 Periodic Functions
Let X be any set and u∶R → X be a periodic function of period T > 0,
that is, u(t+ T ) = u(t) for all t ∈ R. When u depends on further variables
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and is periodic considered as a function of the time variable t, we call u
time periodic.

For a fixed period T , we write T = R/T Z for the corresponding torus
group, which is naturally equipped with the associated quotient topology.
Let π∶R→ R/T Z, t↦ [t] be the quotient map from R onto R/T Z, and let
Π∶T → [0,T ) be the function that maps each coset [t] ∈ T = R/T Z to its
unique representative t ∈ [0,T ). For any T -periodic function u∶R → X,
the composition U = u ○ Π is a function T → X, and for any function
U ∶T → X, the composition u = U ○ π is a T -periodic function R → X.
In this way, we can identify T -periodic functions on R with functions on
T = R/T Z. In the following, we shall always do this tacitly and simply
write U = u in this case. In particular, also t ∈ T is referred to as the time
variable.

Besides its topology, T = R/T Z inherits also the differentiability struc-
ture of R, and we say that a function U ∶T → X is k-times (continuously)
differentiable if u = U ○ π is k-times (continuously) differentiable, and the
(time) derivative is defined by ∂tU = ∂tu ○ π.

2.1.3 General Vector Spaces
For topological vector spaces X and Y the symbol L(X,Y ) denotes the
set of all continuous linear operators X → Y , and we set L(X) ∶= L(X;X).
We write I for the identity mapping in X. The (topological) dual space
of X is denoted by X ′, and for the corresponding dual pairing of x ∈ X
and ϕ ∈ X ′ we write ⟨ϕ,x⟩ = ϕ(x). If X is a semi-normed vector space,
we denote its semi-norm by ∥⋅∥X . For semi-normed vector spaces X and
Y , the Cartesian product X × Y is usually equipped with the semi-norm

∥(x, y)∥X×Y ∶= ∥x∥X + ∥y∥Y .

If X, Y ⊂ Z for some vector space Z, then their intersection X ∩ Y is
equipped with the semi-norm

∥z∥X∩Y ∶= ∥z∥X + ∥z∥Y ,

and if X ∩ Y = {0}, then X ⊕ Y denotes their direct sum. In general, our
notation does not distinguish between the semi-norm of a vector space and
the semi-norm of the n-times Cartesian product Xn, and we simply write
∥⋅∥X for the semi-norm in both cases. Moreover, when the dimension is
clear from the context, we occasionally omit the exponent n and simply
write x ∈X instead of x ∈Xn.
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If X is a complex-valued vector space and A ⊂X, then spanCA denotes
the linear hull of A in X.

2.1.4 Continuous and Integrable Functions
Let X and Y be topological spaces. The space of all continuous functions
X → Y is denoted by C(X;Y ).

For X an open subset of Rn or T × Rn and Y a normed vector space,
the set Ck(X;Y ) contains all k-times continuously (Fréchet) differentiable
functions X → Y , where k ∈ N ∪ {∞}. By Ck(X;Y ) we denote the subset
of Ck(X;Y ) of functions such that each of their derivatives up to order k
can be continuously extended to the boundary of X.

In the case Y = R we simply write C(X), Ck(X), Ck(X) instead of
C(X;R), Ck(X;R), Ck(X;R). By C∞0 (Z) we denote the set of all com-
pactly supported functions in C∞(Z), where Z ∈ {X,X}. The space of
distributions, that is, the dual space of C∞0 (Z), is denoted by D′(Z).

Next we recall the notion of the Lebesgue integral. As customary, we
always identify elements of these spaces, which are equivalence classes of
functions, with one of their representatives and simply refer to them as
functions as well.

Let X be a σ-finite measure space with measure µ. For p ∈ [1,∞)
the symbol Lp(X) denotes the Lebesgue space of p-integrable functions,
equipped with the norm

∥f∥p;X ∶= (∫
X

∣f ∣p dµ)
1/p

,

and L∞(X) is the space of essentially bounded functions with norm

∥f∥∞;X ∶= µ- ess sup
x∈X

∣f(x)∣.

Note that the notation does not indicate the underlying measure µ and
does not distinguish between real-valued and complex-valued functions. In
the following, both will always be clear from the context. If the underlying
space X is also clear from the context, we simply write ∥⋅∥p instead of
∥⋅∥p;X . Moreover, for 1 ≤ p < ∞ the dual space of Lp(X) can be identified
with Lp′(X), where p′ is the Hölder conjugate of p defined p′ = p/(p − 1)
if p ∈ (1,∞), and 1′ = ∞ and ∞′ = 1. We use this identification tacitly.
Furthermore, Lp

loc(X) denotes the set of all locally p-integrable functions
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on X. The weak Lebesgue space Lp,∞(X) consists of all µ-measurable
functions f ∶X → C such that

sup{αµ({x ∈X ∣ ∣f(x)∣ > α})1/p ∣ α > 0} < ∞.
In the case X = Rn, we further write ∣Ω∣ for the Lebesgue measure of

a measurable set Ω ⊂ Rn. In the case X = Z, which is always equipped
with the counting measure, we set `p(Z;X) ∶= Lp(Z;X). If Ω ⊂ Rn is a
domain with boundary ∂Ω, the symbol dS denotes its surface measure
given by the restriction of the (n − 1)-dimensional Hausdorff measure. If
Ω has Lipschitz boundary, we denote by n its unit outer normal vector.

2.2 Harmonic Analysis on Groups
One advantage of the interpretation of modeling the time periodicity of
functions by means of the torus group T is the availability of convolutions
and a Fourier transform. In this section we prepare some related results
from harmonic analysis on such locally compact abelian groups.

2.2.1 Convolutions
Let G be a locally compact abelian group equipped with the Haar measure
µG. In our applications, G coincides with Rn, Z or T = R/T Z or a product
of these spaces. Then Rn and Z are equipped with the standard Lebesgue
measure dx and the counting measure, respectively, and T is equipped
with the normalized Haar measure dt defined by

∀ϕ ∈ C(T) ∶ ∫
T

ϕ(t)dt = 1

T

T

∫
0

ϕ(t′)dt′,

so that T is a finite measure space of measure 1.
The convolution u ∗ v of two functions u, v∶G→ C is given by

u ∗ v(x) ∶= ∫
G

u(x − y)v(y)dµG(y),

provided that this is well defined. If different groups are involved, we
also use the notation u ∗G v to specify the underlying group. Moreover,
if u, v∶G → Cn are vector fields and Γ∶G → Cn×n is a second-order tensor
field, then the convolutions u∗v and Γ∗v are defined by u∗v ∶= uj ∗vj and
(Γ∗v)j ∶= Γjk ∗vk, where we employed the Einstein summation convention
again.
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2.2.2 The Fourier Transform
The symbol S (G) denotes the Schwartz–Bruhat space on G. This gen-
eralization of the classical Schwartz space was introduced by Bruhat [9];
for a precise definition we refer to [20]. For elementary groups of the form
G = Z` × Tm × Rn with `,m,n ∈ N0, which are those we encounter in the
following, it is given by

S (G) = {f ∈ C∞(G) ∣ ∀α,β ∈ Nn
0 , γ ∈ Nm

0 , δ ∈ N`
0 ∶ ρα,β,γ,δ(f) < ∞}

where
ρα,β,γ,δ(f) ∶= sup

(k,t,x)∈Z`×Tm×Rn

∣kδxαDβ
x∂

γ
t f(k, t, x)∣.

Here f ∈ C∞(G) means that f(k, ⋅, ⋅) ∈ C∞(Tm × Rn) for each k ∈ Z`.
Equipped with the topology induced by these semi-norms, S (G) becomes
a locally convex vector space. Its dual space S ′(G) is called the space
of tempered distributions on G. Observe that S (G) and S ′(G) coincide
with the classical Schwartz space and the space of tempered distributions
in the Euclidean case G = Rn.

As for classical tempered distributions in Rn, one defines derivatives
and multiplication via duality by

⟨Dα
xD

β
t Ψ, ϕ⟩ ∶= (−1)∣α∣+∣β∣⟨Ψ,Dα

xD
β
t ϕ⟩, ⟨gΨ, ϕ⟩ ∶= ⟨Ψ, gϕ⟩

for Ψ ∈S ′(G), ϕ ∈S (G), (α,β) ∈ Nn
0×Nm

0 and a suitable smooth function
g∶G→ C. Moreover, if there exists a function f ∈ L1

loc(G) such that

⟨Ψ, ϕ⟩ = ∫
G

fϕdµG

for all ϕ ∈S (G), then we call Ψ a regular distribution and identify it with
f . In this way, the spaces Lp(G), p ∈ [1,∞], are continuously embedded
into S ′(G).

The dual group Ĝ of G consists of all continuous characters γ∶G→ T on
G and is equipped with the compact open topology. By the Pontryagin
duality theorem, the dual group of Ĝ can be identified with G. Then the
Fourier transform FG on G and its inverse F −1

G are given by

FG∶L1(G) → C(Ĝ), FG[f](γ) = ∫
G

f(x)γ(−x)dµG(x),

F −1
G ∶L1(Ĝ) → C(G), F −1

G [f](x) = ∫
Ĝ

f(γ)γ(x)dµĜ(γ).
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The Fourier transform FG is a continuous isomorphism FG∶S (G) →
S (Ĝ), which extends to a continuous isomorphism FG∶S ′(G) →S ′(Ĝ)
by duality, that is,

⟨FG[Ψ], ϕ⟩ ∶= ⟨Ψ,FĜ[ϕ]⟩

for Ψ ∈S ′(G) and ϕ ∈S (Ĝ), which is justified by the Pontryagin duality
theorem. If the Haar measures on G and Ĝ are suitably normalized, then
FG is an isometric isomorphism FG∶L2(G) → L2(Ĝ) with inverse F −1

G .
One can identify the dual groups of Rn and T with R̂n = Rn and T̂ = Z,

respectively. More generally, the dual group of G = Z` × Tm ×Rn can be
identified with Ĝ = T` × Zm × Rn. This property allows to represent the
corresponding Fourier transforms on S (G) as

FT[f](k) = ∫
T

f(t) e−i 2πT kt dt, FRn[f](ξ) = ∫
Rn

f(x) e−ix⋅ξ dx,

F −1
T [f](t) = ∑

k∈Z
f(k) ei 2πT kt, F −1

Rn[f](x) = ∫
Rn

f(ξ) eix⋅ξ dξ.

Due to FT×Rn =FT⊗FRn and F −1
T×Rn =F −1

T ⊗F −1
Rn , we further obtain the

identities

FT×Rn[f](k, ξ) = ∫
T
∫
Rn

f(t, x) e−ix⋅ξ−i 2πT kt dxdt,

F −1
T×Rn[f](t, x) = ∑

k∈Z
∫
Rn

f(k, ξ) eix⋅ξ+i 2πT kt dξ.

Observe that the Lebesgue measure dξ on R̂n has to be renormalized by
a factor (2π)n in order to obtain an isometry FRn ∶L2(Rn) → L2(Rn).
Moreover, the Fourier transform FT on T coincides with the classical
Fourier expansion.

The behavior of derivatives under the Fourier transform is as in the
classical Euclidean case. The identity

FT×Rn[∂`tDα
xΨ] = (i

2π

T k)
`(iξ)αFT×Rn[Ψ]

holds for all α ∈ Nn
0 , ` ∈ N0 and all tempered distributions Ψ ∈S ′(T×Rn).

The delta distributions in Rn and Z are denoted by δRn and δZ, respec-
tively. The support of a distribution Ψ is denoted by suppΨ.
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2.2.3 Fourier Multipliers
A famous concept in the field of harmonic analysis is the theory of Fourier
multipliers.

Definition 2.2.1. Let G be a locally compact abelian group and p ∈
[1,∞). We call m ∈ L∞(Ĝ) an Lp(G) multiplier if the operator

opG[m]∶S (G) →S ′(G), f ↦F −1
G [mFG[f]],

satisfies
∀f ∈S (G) ∶ ∥opG[m](f)∥Lp(G) ≤ C1∥f∥Lp(G).

Then the operator opG[m] has a continuous extension to an operator
Lp(G) → Lp(G), and we simply write opG[m] ∈ L(Lp(G)). We also say
that m is an Lp multiplier on G.

The question whether or not a function m is an Lp multiplier can be
a hard one. While the set of L2(G) multipliers coincides with L∞(Ĝ)
by Plancherel’s Theorem, and the set of L1(G) multipliers is given by
the set of all regular finite Borel measures on G (see [77, Theorem 0.1.1]
for example), an analogous characterization for general p ∈ (1,∞) is not
known. However, there are several famous results, which nowadays belong
to the standard repertoire in Fourier analysis and give sufficient conditions
for a function m to be an Lp multiplier in the setting of the Euclidean
space G = Rn. One of these is the Marcinkiewicz Multiplier Theorem (see
Theorem A.3.3).

However, on general groups such tools are not available directly, and
one has to circumvent this issue. The method applied here is the idea
of multiplier transference. In order to show that a function m is an Lp

multiplier on one group, we transfer it to a different group, where better
tools may be available. This idea goes back to de Leeuw [16] and was
further extended by Edwards and Gaudry [18].

Theorem 2.2.2 (Transference Principle). Let G and H be locally compact
abelian groups, and let Φ∶ Ĥ → Ĝ be a continuous homomorphism. Let
p ∈ (1,∞) and

m ∈ L∞(Ĝ) ∩C(Ĝ)
be a continuous Lp(G) multiplier. Then M ∶=m○Φ is an Lp(H) multiplier
and

∥opH[M]∥L (Lp(H)) ≤ ∥opG[m]∥L (Lp(G)). (2.1)

25



2 Preliminaries

Proof. See [18, Theorem B.2.1] or [20, Theorem 2.15].

Remark 2.2.3. In our applications, we usually meet two different cases.
Either we have

G = R, H = T, Φ∶Z→ R, k ↦ k,

or

G = R ×Rn, H = T ×Rn, Φ∶Z ×Rn → R ×Rn, (k, ξ) ↦ (k, ξ).

In both cases, Φ is the trivial embedding, so that M =m∣H , that is, M is
the restriction of m to H, which is a null set in G. This can be seen as
the justification for the continuity of m required in Theorem 2.2.2.

As an example, we show the continuity of the Riesz transform in Lp(T).

Proposition 2.2.4. The Riesz transform RT in the torus T given by

RT∶S (T) →S ′(T), RT(f) ∶=F −1
T [ − i sgn(k)FT[f]] (2.2)

can be extended to a continuous linear operator Lp(T) → Lp(T) for any
p ∈ (1,∞).

Proof. LetM(k) ∶= −i sgn(k). Then the statement follows ifM is an Lp(T)
multiplier for any p ∈ (1,∞). Let χ ∈ C∞0 (R) be a cut-off function with
χ(η) = 1 for ∣η∣ ≤ 1

2 and χ(η) = 0 for ∣η∣ ≥ 1. Set m(η) ∶= −i(1−χ(η)) sgn(η).
Then m is smooth and m′(η) = iχ′(η) sgn(η). Therefore, m and m′ are
uniformly bounded, and the Marcinkiewicz Multiplier Theorem (Theorem
A.3.3) shows that m is an Lp(R) multiplier. Since M =m∣Z, we conclude
the proof by the Transference Principle (Theorem 2.2.2).

2.3 Sobolev Spaces
Here we introduce the notation for classical and homogeneous Sobolev
spaces. At first, we consider functions that only depend on spatial vari-
ables, and we recall the famous Gagliardo–Nirenberg inequality. We intro-
duce spaces of functions that also depend on time and collect embedding
results for time-periodic functions.
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2.3.1 Classical and Homogeneous Sobolev Spaces
Let Ω be an open subset of Rn, n ∈ N, and let k ∈ N0 and p ∈ [1,∞].
By Wk,p(Ω) we denote the inhomogeneous Sobolev space that contains all
functions u ∈ Lp(Ω) with weak derivatives in Dαu ∈ Lp(Ω) for all ∣α∣ ≤ k,
which is equipped with the norm

∥u∥k,p;Ω ∶= ∑
∣α∣≤k
∥Dαu∥p;Ω.

For A ∈ {Ω,Ω}, the space Wk,p
loc(A) contains all functions u such that

Dαu ∈ Lp
loc(A) for all ∣α∣ ≤ k. Observe that Wk,p

loc(Ω) ≠W
k,p
loc(Ω) in general.

Moreover, the homogeneous Sobolev space Dk,p(Ω) is defined by

Dk,p(Ω) ∶= {u ∈ L1
loc(Ω) ∣ Dαu ∈ Lp(Ω) for all ∣α∣ = k},

which we equip with the semi-norm

∣u∣k,p;Ω ∶= ∑
∣α∣=k
∥Dαu∥p;Ω.

When the underlying domain Ω is clear, we simply write ∥⋅∥k,p and ∣ ⋅ ∣k,p
instead of ∥⋅∥k,p;Ω and ∣ ⋅ ∣k,p;Ω.

In contrast to Wk,p(Ω), the space Dk,p(Ω) is not a Banach space for
k ≥ 1 since ∣ ⋅ ∣k,p is not definite in this case. However, both ∥⋅∥k,p and
∣ ⋅ ∣k,p are norms on C∞0 (Ω), so that one can define the respective Cantor
completions

Wk,p
0 (Ω) ∶= C∞0 (Ω)

∥⋅∥k,p
, Dk,p

0 (Ω) ∶= C∞0 (Ω)
∣ ⋅ ∣k,p

.

For p ∈ (1,∞) their dual spaces are denoted by

W−k,p
0 (Ω) ∶= (Wk,p′

0 (Ω))
′
, D−k,p0 (Ω) ∶= (Dk,p′

0 (Ω))
′
,

where p′ = p/(p−1) is the Hölder conjugate of p. Their norms are denoted
by ∥⋅∥−k,p = ∥⋅∥−k,p;Ω and ∣ ⋅ ∣−k,p = ∣ ⋅ ∣−k,p;Ω.

At this point, we prepare the following density result.

Proposition 2.3.1. Let Ω ⊂ Rn be an arbitrary domain and q, r ∈ (1,∞).
Then C∞0 (Ω) is a dense subset of Lq(Ω) ∩D−1,r0 (Ω).

Proof. The space Lq(Ω)∩D−1,r0 (Ω) can be identified with the dual space of
Lq′(Ω)+D1,r′

0 (Ω), where s′ = s/(s−1) for s ∈ {q, r}. Identifying elements of
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C∞0 (Ω) as regular distributions in D′(Ω), we consider g ∈ Lq′(Ω)+D1,r′
0 (Ω)

belonging to the kernel of each functional in C∞0 (Ω), that is, such that

∫
Ω

ϕg dx = 0

for all ϕ ∈ C∞0 (Ω). This implies g = 0. Consequently, by a standard duality
argument, C∞0 (Ω) is dense in Lq(Ω) ∩D−1,r0 (Ω).

The following theorem gives an estimate of the boundary trace of a
function in W1,2(Ω). We only consider a very particular case here, which
is sufficient for our applications.

Theorem 2.3.2. Let Ω ⊂ Rn be a domain with Lipschitz boundary. For
every ε > 0 there exists a constant C2 = C2(n,Ω, ε) > 0 such that the
estimate

∥u∥2;∂Ω ≤ ε∥∇u∥2;Ω +C2∥u∥2;Ω.

holds for all u ∈W1,2(Ω).

Proof. By a classical trace inequality (see [42, Theorem II.4.1] for exam-
ple) we have

∥u∥2;∂Ω ≤ c0∥u∥
1
2

2;Ω∥u∥
1
2

1,2;Ω ≤ c1∥u∥
1
2

2;Ω(∥u∥2;Ω + ∥∇u∥2;Ω)
1
2

≤ c2(∥u∥2;Ω + ∥u∥
1
2

2;Ω∥∇u∥
1
2

2;Ω).

Now the assertion follows by an application of Young’s inequality.

The following proposition is a generalization of Poincaré’s inequality to
second-order derivatives.

Proposition 2.3.3 (Second-Order Poincaré Inequality). Let Ω ⊂ Rn, n ≥
2, be a bounded Lipschitz domain, and let Γ be an (n − 1)-dimensional
connected component of ∂Ω. For 1 < q < ∞ there exists a constant C3 =
C3(n,Ω,Γ, q) > 0 such that

∥u∥q + ∥∇u∥q ≤ C3∥∇2u∥q (2.3)

for all u ∈W2,q(Ω) with u = 0 on Γ.
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Proof. We prove the statement by a contradiction argument and assume
that it does not hold. Then there exists a sequence (un) ⊂W2,q(Ω) with
un = 0 on Γ such that

∥un∥q + ∥∇un∥q = 1, ∥∇2un∥q ≤
1

n
.

Then the sequence (un) is uniformly bounded in W2,q(Ω) and thus con-
tains a weakly convergent subsequence (which we identify with (un)) with
limit u ∈ W2,q(Ω) satisfying u = 0 on Γ. By the compact embedding
W2,q(Ω) ↪W1,q(Ω), the function u is the strong limit of (un) in W1,q(Ω).
In particular, we conclude

∥u∥q + ∥∇u∥q = 1. (2.4)

Because (∇2un) converges to 0 by assumption, (un) converges strongly to
u in W2,q(Ω) and ∇2u = 0. This implies u(x) = a ⋅ x + b for a ∈ Rn, b ∈ R.
We set

Sa,b ∶= {x ∈ Rn ∣ a ⋅ x + b = 0}.

Since u = 0 on Γ, the hypersurface Γ belongs to the affine linear space Sa,b.
By our assumption, this is only possible if Sa,b = Rn, which is equivalent to
a = 0 and b = 0. This implies u = 0, which contradicts (2.4) and completes
the proof.

Remark 2.3.4. Observe that the assumptions on Γ in Proposition 2.3.3 can
be weakened. As we see from the proof, it suffices to assume that Γ is a
subset of ∂Ω such that the vanishing-trace condition u∣Γ = 0 makes sense
and Γ is not contained in a proper affine subspace of Rn.

Moreover, Proposition 2.3.3 can directly be generalized to higher-order
derivatives by imposing additional geometric requirements on Γ. For ex-
ample, an estimate of the form ∥u∥2,q ≤ C4∥∇3u∥q holds under the addi-
tional assumption that Γ is not contained in a quadric hypersurface.

2.3.2 Interpolation Inequalities
Next we recall the famous Gagliardo–Nirenberg inequality in bounded and
exterior domains and conclude a simple corollary.

Theorem 2.3.5 (Gagliardo–Nirenberg inequality). Let Ω ⊂ Rn, n ≥ 2, be
a bounded domain with Lipschitz boundary, and let p ∈ (1,∞], q ∈ (1,∞),
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m ∈ N and u ∈ Dm,p(Ω) ∩ Lq(Ω). Moreover, let k ∈ N0, 0 ≤ k < m. Then
u ∈ Dk,r(Ω) and

∣u∣k,r ≤ C5(∣u∣θm,p∥u∥1−θq + ∥u∥q),
where

1

r
= k
n
+ θ(1

p
− m
n
) + (1 − θ)1

q

with θ ∈ [k/m,1), and C5 = C5(n,Ω, p, q,m, k, θ) > 0. If m − k − n/p ∉ N0,
then θ = 1 is also admissible.

Proof. See [37, 84].

The following generalized Ehrling’s inequality is a rather direct conse-
quence.

Corollary 2.3.6. Let Ω ⊂ Rn, n ≥ 2, be a bounded domain with Lipschitz
boundary, N ∈ N and p, qk ∈ (1,∞), k = 0, . . . ,N − 1 and ε > 0. If
u ∈WN,p(Ω) and u ∈Wk,qk(Ω) for k = 1, . . . ,N − 1, then

∥u∥p ≤ C6

N−1
∑
k=0
∣u∣k,qk + ε∣u∣m,p,

where C6 = C6(ε, n,Ω,N, p, q0, . . . , qN−1) > 0.

Proof. First we show the estimate for N = 1. Assume u ∈W1,p(Ω)∩Lq(Ω)
for p, q ∈ (1,∞). If q ≥ p, since Ω is a bounded domain, we have

∥u∥p ≤ c0∥u∥q ≤ c0∥u∥q + ε∥u∥1,p

for any ε > 0. If q < p, we employ the Gagliardo–Nirenberg inequality
(Theorem 2.3.5) with θ = n(p − q)/(np − nq + pq) to obtain

∥u∥p ≤ c1(∣u∣θ1,p∥u∥1−θq + ∥u∥q) ≤ c2(1 + ε)∥u∥q + ε∣u∣1,p

by Young’s inequality. This completes the proof in the case N = 1. The
general case now follows iteratively.

The following result generalizes Theorem 2.3.5 to the case of an exterior
domain.

Theorem 2.3.7 (Gagliardo–Nirenberg inequality). Let Ω ⊂ Rn, n ≥ 2, be
an exterior domain with Lipschitz boundary or Ω = Rn. Let p ∈ (1,∞],
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q ∈ (1,∞), m ∈ N and u ∈ Dm,p(Ω)∩Lq(Ω). Moreover, let k ∈ N0, 0 ≤ k <m.
Then u ∈ Dk,r(Ω) and

∣u∣k,r ≤ C7∣u∣θm,p∥u∥1−θq ,

where
1

r
= k
n
+ θ(1

p
− m
n
) + (1 − θ)1

q

with θ ∈ [k/m,1), and C7 = C7(n,Ω, p, q,m, k, θ) > 0. If m − k − n/p ∉ N0,
then θ = 1 is also admissible.

Proof. See [15].

2.3.3 Functions of Space and Time
Let Ω ⊂ Rn and f ∈ L1

loc(T ×Ω), and let X(Ω) be a semi-normed function
space. For p ∈ [1,∞], we write f ∈ Lp(T;X(Ω)) if the function

t↦ ∥f(t, ⋅)∥X(Ω)

belongs to Lp(T), and for p ∈ [1,∞) we set

∥f∥Lp(T;X(Ω)) ∶= (∫
T

∥f(t, ⋅)∥p
X(Ω) dt)

1/p

,

∥f∥L∞(T;X(Ω)) ∶= ess sup
t∈T
∥f(t, ⋅)∥X(Ω).

We further introduce the steady-state projection

Pf(x) ∶= ∫
T

f(t, x)dt, P�f ∶= f − Pf.

Observe that Pf is time-independent. Therefore, we call Pf steady-state
part and P�f purely periodic part of f .

The operators P and P� are continuous projections Lp(T;X(Ω)) →
Lp(T;X(Ω)), which leads to the direct decomposition

Lp(T;X(Ω)) =X(Ω) ⊕ Lp
�(T;X(Ω)),

where we set Lp
�(T;X(Ω)) ∶= P�Lp(T;X(Ω)). If X(Ω) = Lp(Ω), we define

Lp
�(T ×Ω) ∶= P�Lp(T ×Ω).
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We further introduce the space

W1,2,p(T ×Ω) ∶= {u ∈ Lp(T;W2,p(Ω)) ∣ ∂tu ∈ Lp(T ×Ω)},

which is equipped with the norm

∥u∥1,2,p ∶= ∑
∣α∣≤2
∥Dα

xu∥p + ∥∂tu∥p,

and its purely periodic subspace W1,2,q
� (T ×Ω) ∶= P�W1,2,q(T ×Ω).

Moreover, for G = T ×Rn the operators P and P� are continuous map-
pings S (G) → S (G). They can thus be transferred to mappings on
S ′(G) by duality via

⟨PΨ, ϕ⟩ ∶= ⟨Ψ,Pϕ⟩
for Ψ ∈S ′(G) and ϕ ∈S (G). As before, we obtain direct decompositions
of S (G) and S ′(G).

Observe that Pf = FT[f](0) = F −1
T [δZFT[f]] since F −1

T [δZ] = 1. This
further yields the identity

P�f =F −1
T [(1 − δZ)FT[f]].

2.3.4 Embedding Theorems
Here we consider embedding properties of time-periodic functions, more
specifically, of functions in W1,2,q(T×Ω). The following theorem is due to
Galdi and Kyed [50].

Theorem 2.3.8. Let Ω ⊂ Rn, n ≥ 2, be the whole space Rn or a bounded
or exterior domain in Rn with Lipschitz boundary, and let q ∈ (1,∞).
Assume that α ∈ [0,2] and p0, r0 ∈ [q,∞] satisfy

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r0 ≤
2q

2 − αq if αq < 2,

r0 < ∞ if αq = 2,
r0 ≤ ∞ if αq > 2,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p0 ≤
nq

n − (2 − α)q if (2 − α)q < n,

p0 < ∞ if (2 − α)q = n,
p0 ≤ ∞ if (2 − α)q > n,

and that β ∈ [0,1] and p1, r1 ∈ [q,∞] satisfy

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r1 ≤
2q

2 − βq if βq < 2,

r1 < ∞ if βq = 2,
r1 ≤ ∞ if βq > 2,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p1 ≤
nq

n − (1 − β)q if (1 − β)q < n,

p1 < ∞ if (1 − β)q = n,
p1 ≤ ∞ if (1 − β)q > n.
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Then there is a constant C8 = C8(n,Ω,T , q, r0, p0, r1, p1) > 0 such that the
inequality

∥u∥Lr0(T;Lp0(Ω)) + ∥∇u∥Lr1(T;Lp1(Ω)) ≤ C8∥u∥1,2,q (2.5)

holds for all u ∈W1,2,q(T ×Ω).

Proof. This result was proved in [50, Theorem 4.1] for exterior domains
of class C1. However, the proof is first established on the whole space and
then transferred to an exterior domain by means of classical Sobolev exten-
sion operators. Since these operators exist also for bounded and exterior
domains with Lipschitz boundary, the generalization to these domains is
straightforward.

We also need the following refinement of Theorem 2.3.8, which takes
into account a weight in front of the time derivative. Clearly, this does
not affect estimates of the steady-state part of a function u ∈W1,2,q(T×Ω),
which is why we only consider the case of purely periodic functions.

Theorem 2.3.9. Let n ≥ 2, ω > 0 and q ∈ (1,∞). For α ∈ [0,2] with
αq < 2 and (2 − α)q < n let

r0 ∶=
2q

2 − αq , p0 ∶=
nq

n − (2 − α)q ,

and for β ∈ [0,1] with βq < 2 and (1 − β)q < n let

r1 ∶=
2q

2 − βq , p1 ∶=
nq

n − (1 − β)q .

Then there is a constant C9 = C9(n,T , q, α, β) > 0 such that the inequality

ωα/2∥u∥Lr0(T;Lp0(Rn)) + ωβ/2∥∇u∥Lr1(T;Lp1(Rn))

≤ C9(ω∥∂tu∥q + ∥∇2u∥q)
(2.6)

holds for all u ∈ P�W1,2,q(T ×Rn).

Proof. Since S (G) is dense in W1,2,q(G), it suffices to consider u ∈S (G)
with Pu = 0. In particular, we have FG[u] = (1 − δZ)FG[u]. By means of
the Fourier transform FG, we thus derive the identity

u =F −1
G [

1 − δZ(k)
∣ξ∣2 + iω 2π

T k
FG[ω∂tu −∆u]]

=F −1
Rn[∣ξ∣α−2] ∗Rn [ϕα/2 ∗T F ],

(2.7)
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where

F ∶=F −1
G [Mω(k, ξ)FG[ω∂tu −∆u]],

Mω(k, ξ) ∶=
∣k∣α/2∣ξ∣2−α(1 − δZ(k))

∣ξ∣2 + iω 2π
T k

,

ϕα/2 ∶=F −1
T [k ↦ (1 − δZ(k))∣k∣

−α/2].

Then we have
Mω = (

2π

T ω)
−α/2

m̃κ,λ∣Z×Rn

for m̃κ,λ as in (A.87) and κ = ω 2π
T , λ = 0 and θ = α/2. By Lemma A.3.10,

the function m̃κ,λ is a continuous Lq multiplier on R × Rn. In view of
Remark 2.2.3, the Transference Principle (Theorem 2.2.2) thus shows that
Mω is an Lq multiplier on G and satisfies

∥opG[Mω]∥L(Lq(G)) ≤ (
2π

T ω)
−α/2∥opR×Rn[m̃κ,λ]∥L(Lq(R×Rn)) ≤ c0ω−α/2,

where the constant c0 is independent of ω due to (A.90) and λ = 0. Con-
sequently, we have

ωα/2∥F ∥q ≤ c0∥ω∂tu −∆u∥q ≤ c0(ω∥∂tu∥q + ∥∇2u∥q).

Moreover, Lemma A.3.1 yields ϕα/2 ∈ L
1

1−α/2 ,∞(T). Furthermore, it is well
known that the mapping ϕ↦F −1

Rn[∣ξ∣α−2] ∗Rn ϕ extends to a bounded op-
erator Lq(Rn) → Lp0(Rn); see [57, Theorem 6.1.3] for example. Recalling
(2.7) and employing the inequalities by Minkowski and Young, as r0 > q
we have

ωα/2∥u∥Lr0(T;Lp0(Rn)) = ωα/2(∫
T

∥F −1
Rn[∣ξ∣α−2] ∗Rn ϕα/2 ∗T F (t, ⋅)∥

r0

p0
dt)

1
r0

≤ c1ωα/2(∫
T

∥ϕα/2 ∗T F (t, ⋅)∥r0q dt)
1
r0

≤ c2ωα/2(∫
Rn

∥ϕα/2 ∗T F (⋅, x)∥qr0 dx)
1
q

≤ c3ωα/2∥F ∥q ≤ c4(ω∥∂tu∥q + ∥∇2u∥q).

This is the asserted inequality for u. The estimate of ∇u follows in the
same way.
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Remark 2.3.10. Note that the term on the right-hand side of (2.6) defines
a norm equivalent to ∥⋅∥1,2,q on W1,2,q

� (T×Rn). More precisely, since Pu = 0
for u ∈W1,2,q

� (T ×Rn), Poincaré’s inequality yields

ω∥u∥q ≤ C10ω∥∂tu∥q.

By the Gagliardo–Nirenberg inequality (Theorem 2.3.7), this implies

C−111 ∥u∥1,2,q ≤ ω∥∂tu∥q + ∥∇2u∥q ≤ C11∥u∥1,2,q

for a constant C11 > 0 depending on ω.
Remark 2.3.11. Theorem 2.3.9 can be generalized to the setting of an
exterior domain Ω ⊂ Rn by means of Sobolev extensions. However, in
order to maintain the homogeneous estimate (2.6), one has to construct
a specific extension operator that respects the homogeneous second-order
Sobolev norm. To this end, one can make use of results from [10].

2.4 Mathematical Fluid Dynamics
In this section we present some results from mathematical fluid dynamics
that nowadays belong to the standard theory in this field.

2.4.1 The Helmholtz–Weyl Decompositon
The Helmholtz–Weyl decomposition is used to split a vector field into a
divergence-free (also called solenoidal) part and a gradient field. For its
definition, let Ω ⊂ Rn, n ≥ 2, be a domain. Then C∞0,σ(Ω) denotes the space
of all divergence-free smooth vector fields with compact support, that is,

C∞0,σ(Ω) ∶= {ϕ ∈ C∞0 (Ω)n ∣ divϕ = 0}.

For q ∈ (1,∞), the space Lq
σ(Ω) of all solenoidal vector fields in Lq(Ω) and

the space G q(Ω) of all gradient fields in Lq(Ω) are defined by

Lq
σ(Ω) ∶= C∞0,σ(Ω)

∥⋅∥q
, G q(Ω) ∶= {∇p ∣ p ∈ D1,q(Ω)}.

Then the following theorem collects famous results.

Theorem 2.4.1. Let Ω = Rn or let Ω ⊂ Rn be a bounded or exterior
domain of class C2. Let q ∈ (1,∞). For each f ∈ Lq(Ω) there are unique
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elements u ∈ Lq
σ(Ω) and g = ∇p ∈ G q(Ω) such that f = u + g = u + ∇p. In

other words, the unique decomposition

Lq(Ω) = Lq
σ(Ω) ⊕ G q(Ω),

called Helmholtz–Weyl decomposition, holds. Moreover, there exists an
associated projection operator PH, called Helmholtz projector, such that
PHf = u. Then PH∶Lq(Ω) → Lq(Ω) is a continuous linear operator that
satisfies P2

H = PH, and PH is an orthogonal projection if q = 2.

Proof. A proof can be found in [42, Theorem III.1.2] for example.

Note that in the case q = 2 the Helmholtz–Weyl decomposition is valid
for any domain Ω; see [42, Theorem III.1.1] for example. In contrast, for
any q ≠ 2 there exist domains, where this decomposition does not hold;
see further references in [42, Section III.1].

We further introduce the homogeneous space

D1,q
0,σ(Ω) ∶= C∞0,σ(Ω)

∣ ⋅ ∣1,q
.

2.4.2 The Divergence Problem
Here we collect famous results about the divergence problem, that is, given
a function g∶Ω→ R on a domain Ω ⊂ Rn, to find a function v∶Ω→ Rn such
that

{
div v = g in Ω,

v = 0 on ∂Ω,
(2.8)

and satisfying suitable a priori estimates.
We shall often encounter this problem in the following setting. When

deriving properties for a function u∶Ω→ Rn defined on an exterior domain
Ω, we frequently multiply u with a cut-off function χ ∈ C∞(Rn) with
specific support and obtain a function w ∶= χu. When u satisfies divu = 0,
this property is lost during this procedure in general, and divw does not
vanish everywhere since divw = u⋅∇χ. To obtain a divergence-free function
again, the idea is to subtract a function v satisfying (2.8) with g = u ⋅ ∇χ.

In a bounded domain, this problem is resolved by the Bogovkskiĭ oper-
ator B. Before its introduction, note that if Ω is a bounded domain, the
assumption

∫
Ω

g dx = 0 (2.9)
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is necessary for the existence of a solution v to (2.8) due to the divergence
theorem.

Theorem 2.4.2 (Bogovskiĭ Operator). Let D ⊂ Rn, n ≥ 2 be a bounded
domain with Lipschitz boundary, There is a linear operator B∶C∞0 (D) →
C∞0 (D)n, called Bogovskiĭ operator, with the property

∫
D

ϕdx = 0 Ô⇒ divBϕ = ϕ.

For q ∈ (1,∞) and m ∈ N0, this operator has a continuous extension to
a linear operator B∶Wm,q

0 (D) → Wm+1,q
0 (D)n. Moreover, there exists a

constant C12 = C12(n,D, q) > 0 such that

∥Bg∥q ≤ C12∣g∣∗−1,q;D (2.10)

for all g ∈ Lq(D), where ∣ ⋅ ∣∗−1,q;D is defined by

∣g∣∗−1,q;D ∶= sup{∣∫
D

gψ dx∣ ∣ ψ ∈ C∞0 (Rn), ∥∇ψ∥q′;D = 1}. (2.11)

In particular, if g satisfies (2.9), then v =Bg is a solution to (2.8).

Proof. See [42, Theorem III.3.3 and Theorem III.3.5] for example.

Let us have a closer look at estimate (2.10). The term ∣g∣∗−1,q;D on
the right-hand side seems unusual, and one may prefer to replace it by
∥g∥−1,q;D for example, the norm of g in W−1,q

0 (Ω). One can show that this
is not possible in general; see [42, Section III.3]. However, the following
proposition shows that when g = u⋅∇χ = div(χu), the situation is different.

Proposition 2.4.3. Let Ω ⊂ Rn be an exterior domain and let D ⊂ Ω
be a bounded domain, both with Lipschitz boundary. Let q ∈ (1,∞) and
u ∈W1,q

loc(Ω)n with divu = 0 in Ω and u ⋅ n = 0 on ∂Ω. Further, let a, b ∈ R
and let χ ∈ C∞(Rn) be a smooth function with χ ≡ a on BR and χ ≡ b on
Br for some R > r > δ(Ωc) such that BR ∖Br ⊂D. Then

∣u ⋅ ∇χ∣∗−1,q;D ≤ C13∥u∥−1,q;D. (2.12)

for some constant C13 = C13(n,D, q,χ) > 0.
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Proof. To show (2.12), for ψ ∈ C∞0 (Rn) we introduce the notation

ψD ∶=
1

∣D∣ ∫
D

ψ dx.

Set g ∶= u ⋅ ∇χ = div(χu). By assumption we have supp g ⊂ BR ∖ Br ⊂ D.
Due to u ⋅ n = 0 on ∂Ω, the divergence theorem yields

∫
BR

gψ dx = ∫
∂BR

χu ⋅ nψ dS − ∫
BR

χu ⋅ ∇ψ dx

= ∫
∂BR

χu ⋅ nψ dS − ∫
BR

χu ⋅ ∇(ψ − ψD)dx

= aψD ∫
∂BR

u ⋅ ndS + ∫
BR

g(ψ − ψD)dx = ∫
BR

g(ψ − ψD)dx

due to divu = 0. Repeating this calculation for Br, we obtain the analogue
identity and conclude

∫
D

gψ dx = ∫
BR

gψ dx − ∫
Br

gψ dx = ∫
BR

g(ψ − ψD)dx − ∫
Br

g(ψ − ψD)dx

= ∫
D

g(ψ − ψD)dx = ∫
D

u ⋅ ∇χ(ψ − ψD)dx

Therefore, we have

∣∫
D

gψ dx∣ ≤ ∥u∥−1,q;D∥∇χ(ψ − ψD)∥1,q′;D

with q′ = q/(q−1). From χ ∈ C∞0 (Rn) and Poincaré’s inequality, we further
deduce

∥(ψ − ψD)∇χ0∥1,q′;D ≤ c0∥ψ − ψD∥1,q′;D ≤ c1∥∇(ψ − ψD)∥q′;D = c1∥∇ψ∥q′;D.

Employing both of these estimates in the definition of ∣ ⋅ ∣∗−1,q′;D, we obtain

∣u ⋅ ∇χ∣∗−1,q;D = ∣g∣
∗
−1,q;D

≤ sup{∥u∥−1,q;D∥(ψ − ψD)∇χ∥1,q′;D ∣ ψ ∈ C∞0 (R3), ∥∇ψ∥q′;D = 1}
≤ c1∥u∥−1,q;D sup{∥∇ψ∥q′;D ∣ ψ ∈ C∞0 (R3), ∥∇ψ∥q′;D = 1}
= c1∥u∥−1,q;D,

which is (2.12).
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We can now combine the estimates (2.10) and (2.12). Moreover, in the
setting of Proposition 2.4.3, assumption (2.9) is satisfied automatically, so
that the Bogovskiĭ operator provides a solution to problem (2.8).

Corollary 2.4.4. In the situation of Proposition 2.4.3, let B be the Bo-
govskiĭ operator on D. Then divB(u ⋅ ∇χ) = u ⋅ ∇χ and

∥B(u ⋅ ∇χ)∥q;D ≤ C14∥u∥−1,q;D. (2.13)

Proof. Estimate (2.13) is a direct consequence of (2.10) and (2.12). It
remains to verify condition (2.9). As in the previous proof, we define
g ∶= u ⋅ ∇χ. By the divergence theorem and due to u ⋅ n = 0 on ∂Ω, we
obtain

∫
BR

g dx = ∫
BR

div(χu)dx = ∫
∂BR

χu ⋅ ndS = a∫
BR

divudx = 0.

Repeating this calculation for Br, we see that the corresponding integral
vanishes as well. Due to supp g ⊂ BR ∖Br, we obtain

∫
D

g dx = ∫
BR∖Br

g dx = ∫
BR

g dx − ∫
Br

g dx = 0.

Now Theorem 2.4.2 yields divBg = g, which completes the proof.

2.4.3 The Stokes Problem in a Bounded Domain
Here we collect several results concerning the analysis of the (generalized)
Stokes resolvent problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λu −∆u +∇p = f in D,

divu = g in D,

u = 0 on ∂D

(2.14)

in a bounded domain D ⊂ Rn. First of all, let us recall the following
well-posedness result including a resolvent estimate.

Theorem 2.4.5 (Stokes Resolvent Problem). Let D ⊂ Rn, n ≥ 2, be a
bounded domain of class C2. Let ε > 0 and

λ ∈ {z ∈ C ∖ {0} ∣ ∣arg z∣ < π − ε} ∪ {0}.
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For all f ∈ Lq(D) and g ∈W1,q(D) with

∫
D

g dx = 0

there exist functions u ∈W2,q(D) and p ∈W1,q(D) that satisfy (2.14), and
there is a constant C15 = C15(n,D, q, ε) > 0 such that

∥λu∥q + ∥u∥2,q + ∥∇p∥q ≤ C15(∥f∥q + ∥∇g∥q + ∣λg∣∗−1,q;D), (2.15)

where ∣ ⋅ ∣∗−1,q;D is defined in (2.11). Moreover, if (u1,p1) ∈ W2,q(D) ×
W1,q(D) is another solution to (2.14), then u = u1 and p = p1 + c for some
constant c ∈ R.

Proof. See [33] for example.

Observe that the constant C15 in the resolvent estimate (2.15) is inde-
pendent of the resolvent parameter λ, which is crucial for the treatment
of corresponding time-dependent problems. Moreover, the term ∣λg∣∗−1,q;D,
which appears on the right-hand side of (2.15), can be estimated with the
help of Proposition (2.4.3) if g is of the form discussed there.

In the divergence-free case, that is, for g = 0, one can reformulate (2.14)
as a resolvent problem of the Stokes operator −PH∆, which is a closed
operator on the space of solenoidal vector field Lq

σ(D). The following
theorem collects famous results in the Hilbert-space case q = 2.

Theorem 2.4.6 (Stokes Operator). Let D ⊂ Rn, n ≥ 2, be a bounded
domain of class C2. Then the Stokes operator, given by

A∶dom(A) ⊂ L2
σ(D) → L2

σ(D), u↦ −PH∆u,
dom(A) ∶= L2

σ(D) ∩W1,2
0 (D)n ∩W2,2(D)n,

(2.16)

is a densely defined closed operator. Moreover, A is invertible and positive
self-adjoint. If f ∈ L2(Ω), then (u,p) ∈W2,2(Ω) ×W1,2(Ω) is a solution to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆u +∇p = f in D,

divu = 0 in D,

u = 0 on ∂D

(2.17)

if and only if u ∈ dom(A) with Au = PHf .

Proof. See [97, Theorem III.2.1.1] for example.

40



2.4 Mathematical Fluid Dynamics

For the moment consider f ∈ L2
σ(D), and let (u,p) ∈W2,2(Ω)×W1,2(Ω)

be a solution to (2.17). By Theorem 2.4.6 we then have −PH∆u = PHf = f ,
and Theorem 2.4.5 yields the estimate

∥u∥2,2 ≤ C15∥f∥2 = C15∥PH∆u∥2,

where the constant C15 depends on the domain D, which is a natural
phenomenon. The peculiarity of the next lemma is that it yields an es-
timate of the second derivatives of u by the Stokes operator such that
the corresponding constant is independent of the domain D under certain
conditions. However, to achieve this, one has to add the term ∥∇u∥2 on
the right-hand side.

Lemma 2.4.7. Let D ⊂ R3 be a bounded domain with C3-boundary. Every
u ∈ L2

σ(D) ∩W1,2
0 (D) ∩W2,2(D) satisfies

∥∇2u∥2 ≤ C16(∥PH∆u∥2 + ∥∇u∥2)

for a constant C16 = C16(D) > 0 that does not depend on the “size” of
D but solely on its “regularity”. In particular, if D = ΩR for an exterior
domain Ω with ∂Ω ⊂ BR, the constant C16 is independent of R and solely
depends on Ω.

Proof. See [59, Lemma 1].
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This chapter is concerned with the existence of strong solutions to the
Oseen and Navier–Stokes equations, describing viscous incompressible flow
past a body, in both the steady-state and the time-periodic case. The main
novelty is the following: Though considering these problems in an exterior
domain, we derive existence of solutions with velocity field belonging to a
full Sobolev space, and not only to a homogeneous one. These results are
new and were published in [19].

To be more precise, we begin with the linear theory, that is, the study
of the time-periodic Oseen problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu −∆u − λ∂1u +∇p = f in T ×Ω,
divu = 0 in T ×Ω,

u = 0 on T × ∂Ω,
lim
∣x∣→∞

u(t, x) = 0 for t ∈ T

and its steady-state counterpart in an exterior domain Ω ⊂ Rn, n ≥ 2.
The Reynolds number λ > 0 and the time period T > 0 defining the torus
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3 Flow Past a Non-rotating Body

group T ∶= R/T Z are fixed and data f is prescribed. The main task is to
find suitable functional frameworks that render these problems well posed,
that is, such that there exists a unique velocity field u and a pressure p
in a suitable functional framework that satisfy these equations and obey
corresponding a priori estimates.

Let us address the time-independent case at first, that is, the steady-
state Oseen problem, which has been studied extensively over the last
years. There exists a well-established Lq theory for this problem, which
was initiated by Galdi [40]. For an overview, we further refer to [42,
Chapter VII], the more recent paper [2] and the bibliography there in-
cluded. Concerning the question of well-posedness, the peculiarity is that
for general data f ∈ Lq(Ω), the solution space for the velocity field u is not
a full Sobolev space but an intersection of homogeneous Sobolev spaces.
One can merely ensure that

∇2v ∈ Lq(Ω), ∇v ∈ Ls1(Ω), v ∈ Ls2(Ω)

for different values q < s1 < s2. In this chapter, this problem is resolved by
passing to a different functional framework. More precisely, we consider
data f that, besides being an element of a Lebesgue space Lq(Ω), belong
to D−1,r0 (Ω), the dual space of a homogeneous Sobolev space. Under cer-
tain conditions on q and r, we show existence of a solution (u,p) such
that the velocity field u belongs to the full space W2,q(Ω) and satisfies
corresponding a priori estimates.

Based on this, we analyze the time-periodic Oseen problem by decom-
posing it into the steady-state Oseen problem and a second purely peri-
odic problem. For the latter, the velocity-field solution naturally belongs
to the full Sobolev space W1,2,q(T × Ω) for f ∈ Lq(T × Ω). Therefore, by
a combination with the previously collected steady-state results, we then
establish well-posedness in a framework where the (time-periodic) velocity
field belongs to the full Sobolev space W1,2,q(T ×Ω).

Finally, we show existence of both steady-state and time-periodic solu-
tions to the Navier–Stokes problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tv −∆v − λ∂1v +∇p + v ⋅ ∇v = f in T ×Ω,
div v = 0 in T ×Ω,

v = −λ e1 on T × ∂Ω,
lim
∣x∣→∞

v(t, x) = 0 for t ∈ T,

which describes the flow around a body that translates with non-vanishing
velocity λ e1, λ > 0. Assuming that the data f and λ are “sufficiently
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small”, and n ≥ 3, we employ the developed linear theory and show exis-
tence of solutions (v, p) by the contraction mapping principle. This yields
solutions where the velocity field v belongs to a full Sobolev space in both
the steady-state and the time-periodic case.

In this chapter, we proceed as follows. In Section 3.1 we show well-
posedness of the steady-state Oseen problem in a framework where the
velocity field belongs to the full Sobolev space W2,q(Ω). In Section 3.2 we
then derive two different well-posedness results for the time-periodic Oseen
problem. Finally, Section 3.3 deals with the nonlinear case, that is, the
existence of steady-state and time-periodic solutions to the Navier–Stokes
equations for “small” data.

3.1 The Steady-State Oseen System
In this section, we address the question of well-posedness of the steady-
state Oseen system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∆u − λ∂1u +∇p = f in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω,

lim
∣x∣→∞

u(x) = 0,

(3.1)

where Ω is an exterior domain of Rn and f ∶Ω→ Rn and λ > 0 are a given
external force and a dimensionless (Reynolds) number, whereas u∶Ω→ Rn

and p∶Ω→ R are unknown velocity and pressure fields, respectively. First
of all, we recall well-known results on the existence of strong solutions for
data f ∈ Lq(Ω) and of weak solutions for data f ∈ D−1,r0 (Ω). In both cases
one can merely ensure the velocity field u to belong to an intersection of
homogeneous Sobolev spaces but not to a classical one. Motivated by this
observation, we then derive a solution theory such that the velocity field
u belongs to a classical Sobolev space W2,q(Ω) for suitable q ∈ (1,∞). To
this end, we consider data f ∈ Lq(Ω) ∩D−1,r0 (Ω) and establish existence of
a unique solution together with suitable a priori estimates.

3.1.1 Strong Solutions in Homogeneous Sobolev Spaces
Here we recall the classical well-posedness result for the steady-state Oseen
problem (3.1) for data f ∈ Lq(Ω). For this purpose, we introduce the

45



3 Flow Past a Non-rotating Body

following function space, which characterizes the velocity field u. For
q ∈ (1, n+12 ) and λ > 0 we define

Xq
λ(Ω) ∶= {u ∈ D2,q(Ω)n ∩D1,s1(Ω)n ∩ Ls2(Ω)n ∣ ∂1u ∈ Lq(Ω)n}, (3.2)

which we equip with the norm

∥u∥Xq
λ
(Ω) ∶= ∣u∣2,q + λ∥∂1u∥q + λ

1
n+1 ∣u∣1,s1 + λ

2
n+1 ∥u∥s2 ,

where

s1 ∶=
(n + 1)q
n + 1 − q , s2 ∶=

(n + 1)q
n + 1 − 2q . (3.3)

The following result is well known.

Theorem 3.1.1. Let Ω ⊂ Rn, n ≥ 2, be an exterior domain with C2

boundary. Let λ > 0 and q ∈ (1, n+12 ). For every f ∈ Lq(Ω) there exists
a solution (u,p) ∈ Xq

λ(Ω) × D1,q(Ω) to (3.1), which further satisfies the
estimate

∥u∥Xq
λ
(Ω) + ∣p∣1,q ≤ C17∥f∥q (3.4)

for a constant C17 = C17(n,Ω, q, λ) > 0. However, if q ∈ (1, n2 ) and 0 < λ ≤
λ0 for some λ0 > 0, then C17 = C17(n,Ω, q, λ0), that is, C17 is independent
of λ. Moreover, if (ũ, p̃) ∈ Xq

λ(Ω) ×D1,q(Ω) is another solution to (3.1),
then u = ũ and p = p̃ + c for some constant c ∈ R.

Proof. This result was proved in [40]. See also [42, Theorem VII.7.1].

The previous theorem does not treat the case f ∈ Lq(Ω) for q ≥ n+1
2 .

However, it is possible to show existence of a unique solution in an appro-
priate quotient space, which satisfies an a priori estimate corresponding
to (3.4); see [42, Remark VII.7.1] for example.

To obtain a well-posedness result in a different functional framework,
one main ingredient in our approach is the following theorem that provides
us with an a priori estimate for a solution to the Oseen problem

{
−∆u − λ∂1u +∇p = f in Rn,

divu = 0 in Rn (3.5)

in the whole space.
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3.1 The Steady-State Oseen System

Theorem 3.1.2. Let n ≥ 2, q ∈ (1,∞) and λ > 0. For every f ∈ Lq(Rn)
there exists a solution (u,p) ∈W2,q

loc(Rn)n ×W1,q
loc(Rn) to (3.5) that satisfies

∣u∣2,q + λ∥∂1u∥q + ∣p∣1,q ≤ C18∥f∥q (3.6)

for some constant C18 = C18(n, q) > 0 independent of λ.

Proof. See [42, Theorem VII.4.1].

Note that Theorem 3.1.2 tells nothing about uniqueness of the solution.
Clearly, if one modifies u and p by additive constants, they still are solu-
tions to (3.5). This is not the only possible modification. However, in the
next lemma we show that we have uniqueness up to polynomials. Note
that we also allow the case λ = 0.

Lemma 3.1.3. Let n ≥ 2, λ ∈ R and (u,p) ∈S ′(Rn)n+1 satisfy (3.5) with
data f = 0. Then uj, j = 1, . . . , n, and p are polynomials.

Proof. Computing the divergence of (3.5)1, we obtain ∆p = 0, which yields
−∣ξ∣2p̂ = 0 with p̂ = FRn[p]. Hence, we have supp p̂ ⊂ {0}, so that p is a
polynomial. Now an application of the Fourier transform FRn to (3.5)1
results in (∣ξ∣2 − iλξ1)û = −iξp̂ with û =FRn[u], so that

supp [(∣ξ∣2 − iλξ1)û] = supp [ − iξp̂] ⊂ {0}.

Since the only zero of ξ ↦ (∣ξ∣2 − iλξ1) is ξ = 0, we conclude supp û ⊂ {0},
and u is a polynomial in each component.

3.1.2 Weak Solutions in Homogeneoues Sobolev Spaces
After having prepared the required statements on strong solutions, let us
now collect some well-known results about weak solutions to the steady-
state Oseen problem (3.1). First of all, let us recall the notion of weak
solutions.

Definition 3.1.4. Let Ω ⊂ Rn, n ≥ 2, be an exterior domain, and let
f ∈ D′(Ω)n be a distribution. A function u ∈ D1,r

0 (Ω)n with r ∈ (1,∞) is
called weak solution to (3.1) if it satisfies divu = 0, and

∫
Ω

∇u ∶ ∇ϕ − λ∂1u ⋅ ϕdx = ⟨f,ϕ⟩ (3.7)
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for all ϕ ∈ C∞0,σ(Ω). Moreover, we call a function p ∈ L1
loc(Ω) a pressure

associated to u if (u,p) satisfies (3.1)1 in the sense of distributions, that
is,

∫
Ω

∇u ∶ ∇ψ − λ∂1u ⋅ ψ dx = ⟨f,ϕ⟩ + ∫
Ω

pdivψ dx (3.8)

for all ψ ∈ C∞0 (Ω)n.

The next lemma provides sufficient conditions on the right-hand side f
in order to find an associated pressure p for a weak solution u.

Lemma 3.1.5. Let Ω ⊂ Rn, n ≥ 2, be a locally Lipschitz exterior domain,
let r ∈ (1,∞) and f ∈ W−1,r

0 (ΩR)n for any R > δ(Ωc). Then, for every
weak solution u ∈ D1,r

0 (Ω)n to (3.1) there exists an associated pressure field
p with p ∈ Lr(ΩR) for all R > δ(Ωc). If f ∈ D−1,r0 (Ω)n for r > n/(n − 1),
one can choose p such that p ∈ Lr(Ω).

Proof. See [42, Lemma VII.1.1 and Theorem VII.7.3].

Note that Lemma 3.1.5 only yields a pressure p ∈ Lr(Ω) if r > n/(n−1).
It is an open question whether or not this global integrability can be
achieved if r ∈ (1, n/(n − 1)]; see also [42, Remark VII.7.2].

The existence of weak solutions u ∈ D1,r
0 (Ω) for f ∈ D−1,r0 (Ω) together

with corresponding a priori estimates has first been shown by Galdi
[40] in the case r ∈ ( n

n−1 , n + 1). Later, Amrouche and Razafison [3]
extended this result in the three-dimensional case to r ∈ (43 ,4), and Kim
and Kim [64] generalized it in n ≥ 2 dimensions and showed existence for
f ∈ D−1,r0 (Ω)n for any r ∈ (n+1n , n+ 1). The following theorem collects their
results.

Theorem 3.1.6. Let Ω ⊂ Rn, n ≥ 2, be an exterior domain with C2-
boundary. Let r ∈ (n+1n , n + 1), 0 < λ ≤ λ0 and f ∈ D−1,r0 (Ω)n. Define
s ∶= (n+1)rn+1−r . Then there exists a unique weak solution u ∈ D1,r

0 (Ω)n∩Ls(Ω)n
to (3.1), which satisfies the estimate

∥∇u∥r + λ
1+δ
n+1 ∥u∥s ≤ C19λ

− M
n+1 ∣f ∣−1,r (3.9)

for some constant C19 = C19(n, r,Ω, λ0) > 0, where

M =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2 if n+1
n < r ≤ n

n−1 ,

0 if n
n−1 < r < n,

1 if n ≤ r < n + 1,
δ =
⎧⎪⎪⎨⎪⎪⎩

1 if n = r = 2,
0 else.

(3.10)
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Furthermore, there exists an associated pressure p such that p ∈ Lr(ΩR)
and ∂1u ∈W−1,r

0 (ΩR)n for any R > δ(Ωc). Provided that

∫
ΩR

pdx = 0,

these functions further obey the estimate

λ∥∂1u∥−1,r;ΩR
+ ∥p∥r;ΩR

≤ C20λ
− M

n+1 ∣f ∣−1,r (3.11)

for a constant C20 = C20(n, r,Ω, λ0,R) > 0.
Additionally, if r ∈ ( n

n−1 , n), we can choose p such that p ∈ Lr(Ω). Then
∂1u ∈ D−1,r0 (Ω)n and the estimate

∥p∥r + λ∣∂1u∣−1,r ≤ C21∣f ∣−1,r (3.12)

holds for some constant C21 = C21(n, r,Ω, λ0) > 0.

Proof. The existence of a unique weak solution u ∈ Ls(Ω)n ∩ D1,r
0 (Ω)n,

which obeys estimate (3.9), was established in [64, Theorem 2.2]. Due
to the embedding D−1,r0 (Ω) ↪W−1,r

0 (ΩR), by Lemma 3.1.5 there exists an
associated pressure p with p ∈ Lr(ΩR) for any R > δ(Ωc). Moreover, for
ψ ∈ C∞0 (ΩR)n we thus have

−λ∫
Ω

∂1u ⋅ ψ dx = ⟨f,ψ⟩ + ∫
Ω

(pdivψ −∇u ∶ ∇ψ)dx

≤ (∣f ∣−1,r + ∥p∥r;ΩR
+ ∥∇u∥r)∥∇ψ∥r′ ,

where r′ = r/(r − 1), which implies ∂1u ∈W−1,r
0 (ΩR) and

λ∥∂1u∥−1,r;ΩR
≤ c0(∣f ∣−1,r + ∥p∥r;ΩR

+ ∥∇u∥r). (3.13)

In particular, since C∞0 (ΩR) is dense in W1,r′
0 (ΩR), the identity (3.8) holds

for all ψ ∈W1,r′
0 (ΩR)n. To derive an estimate for p, we fix R > δ(Ωc). By

adding a suitable constant to p, we may assume that its mean value on
ΩR vanishes. Now let ψ ∈W1,r′

0 (ΩR)n be a solution to the problem

divψ = ∣p∣r−2p − 1

∣ΩR∣ ∫
ΩR

∣p∣r−2pdx =∶ g in ΩR,

which exists by Theorem 2.4.2 since g has vanishing mean value and sat-
isfies g ∈ Lr′(ΩR). Moreover, we have

∥ψ∥1,r′;ΩR
≤ c1∥g∥r′;ΩR

≤ c2∥p∥r−1r;ΩR
.

49



3 Flow Past a Non-rotating Body

Inserting this function ψ into (3.8), since the mean value of p vanishes, we
deduce

∥p∥rr;ΩR
= ∫
ΩR

pdivψ dx + ∫
ΩR

pdx
1

∣ΩR∣ ∫
ΩR

∣p∣r−2pdx

= ∫
ΩR

∇u ∶ ∇ψ − λ∂1u ⋅ ψ dx − ⟨f,ψ⟩

≤ c3(1 + λ0)(∥∇u∥r + ∣f ∣−1,r)∥ψ∥1,r′;ΩR

≤ c4(1 + λ0)(∥∇u∥r + ∣f ∣−1,r)∥p∥r−1r;ΩR
.

Combining this estimate, (3.13) and (3.9), we arrive at (3.11).
Now let n/(n − 1) < r < n. Then Lemma 3.1.5 yields the existence of a

pressure p ∈ Lr(Ω), and by [42, Theorem VII.7.2] we have the estimate

∥p∥r ≤ c5∣f ∣−1,r.

Arguing as above, we now obtain ∂1u ∈ D−1,r0 (Ω) and

λ∣∂1u∣−1,r ≤ c6(∣f ∣−1,r + ∥p∥r + ∥∇u∥r).
Since M = 0, a combination of these estimates with (3.9) finally implies
(3.12).

We further recall the following local regularity result for weak solutions.
Theorem 3.1.7. Let Ω be an exterior domain of class C2, r ∈ (1,∞), and
f ∈ C∞0 (Ω)n. Let u ∈ W1,r

loc(Ω)n, p ∈ Lr
loc(Ω) such that divu = 0, u∣∂Ω = 0

and (3.7) is satisfied for all ϕ ∈ C∞0,σ(Ω) . Then u ∈ C∞(Ω) ∩W2,r
loc(Ω) and

the associated pressure p satisfies p ∈ C∞(Ω) ∩W1,r
loc(Ω).

Proof. See [42, Theorem VII.1.1].

In order to obtain uniqueness for solutions to (3.1) in an exterior do-
main, we cannot directly proceed as in Lemma 3.1.3. However, a standard
cut-off argument combined with the following decay property for weak so-
lutions turns out to be a useful method to exploit Lemma 3.1.3 also in
exterior domains. We employ this in the proof of Lemma 3.1.9.
Theorem 3.1.8. Let Ω ⊂ Rn, n ≥ 2, be an exterior domain and u be
a weak solution to (3.1) with u ∈ Ls(ΩR) for some s ∈ (1,∞) and some
R > δ(Ωc). Moreover, let f ∈ Wm,r(Ω) for some m ∈ N0, r ∈ (n/2,∞).
Then

∀α ∈ Nn
0 , 0 ≤ ∣α∣ ≤m ∶ lim

∣x∣→∞
Dαu(x) = 0.

Proof. See [42, Theorem VII.6.1].
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3.1.3 Strong Solutions in Full Sobolev Spaces
In order to find an appropriate function space such that the velocity-
field solution u to (3.1) is an element of the inhomogeneous Sobolev space
W2,q(Ω), we combine the theory for strong and weak solutions from the
previous subsections. The following lemma provides an Lq estimate for
the solution with error terms on the right-hand side, which are omitted
in the proof of the subsequent main theorem. For the proof we employ a
classical cut-off procedure.

Lemma 3.1.9. Let Ω ⊂ Rn, n ≥ 2, be an exterior domain of class C2, and
r, s ∈ (1,∞), f ∈ C∞0 (Ω)n. Let u ∈ D1,r(Ω)n ∩Ls(Ω)n be a weak solution to
(3.1), and let p ∈ Lr

loc(Ω) be an associated pressure. Then, u ∈ D2,q(Ω)n,
∂1u ∈ Lq(Ω)n, and p ∈ D1,q(Ω) for all q ∈ (1,∞), and for each R > δ(Ωc)
there exists C22 = C22(n, q,Ω,R) > 0 such that

∣u∣2,q + λ∥∂1u∥q + ∣p∣1,q ≤ C22(1 + λ2)(∥f∥q + ∥u∥1,q;ΩR
+ ∥p∥q;ΩR

). (3.14)

Proof. By Theorem 3.1.7, we have u ∈W2,q
loc(Ω)∩C∞(Ω) and p ∈W1,q

loc(Ω)∩
C∞(Ω) for all q ∈ (1, r]. Let 0 < R0 < R1 < R such that ∂BR0 ⊂ Ω, and
let χ ∈ C∞0 (Rn) with χ ≡ 1 on BR0 and χ ≡ 0 on BR1 . We set v ∶=
(1 − χ)u +B(u ⋅ ∇χ) and p ∶= (1 − χ)p, where B denotes the Bogovskiĭ
operator; see Theorem 2.4.2. Then v ∈W2,q

loc(Rn) ∩D1,r(Rn) ∩ Ls(Rn) and
p ∈W1,q

loc(Rn) satisfy

{
−∆v − λ∂1v +∇p = F in Rn,

div v = 0 in Rn (3.15)

with

F ∶= (1 − χ)f + 2∇χ ⋅ ∇u +∆χu + λ∂1χu − p∇χ + [ −∆ − λ∂1]B(u ⋅ ∇χ).

Moreover, we have F ∈ Lq(Ω) with

∥F ∥q ≤ c0(∥f∥q + (1 + λ)∥u∥1,q;ΩR1
+ ∥p∥q;ΩR1

+ (1 + λ)∥B(u ⋅ ∇χ)∥2,q)
≤ c1(∥f∥q + (1 + λ)∥u∥1,q;ΩR1

+ ∥p∥q;ΩR1
)

by Theorem 2.4.2. From Theorem 3.1.2 we thus conclude the existence of
a solution (v1, p1) ∈W2,q

loc(Rn) ×W1,q
loc(Rn) to (3.15) that satisfies estimate

∣v1∣2,q + λ∥∂1v1∥q + ∣p1∣1,q ≤ C18∥F ∥q. (3.16)
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Now set w ∶= v − v1 and q ∶= p − p1. Then (w,q) is a solution to the homo-
geneous system (3.5) with f = 0. Therefore, w = v − v1 is a polynomial by
Lemma 3.1.3. Moreover, from Theorem 3.1.8 and f ∈ C∞0 (Ω) we conclude

lim
∣x∣→∞

Dαv(x) = lim
∣x∣→∞

Dαu(x) = 0

for all α ∈ Nn
0 . For ∣α∣ = 2 we further have Dαv1 ∈ Lq(Ω), so that the

polynomial Dαw = Dαv −Dαv1 must be zero, that is, Dαw = 0 for ∣α∣ = 2.
In the same way we conclude ∂1w = 0 and, since both v and v1 are solutions
to (3.15), also ∇q = 0. Hence, we can replace (v1, p1) with (v, p) in estimate
(3.16). Since u = v and p = p on ΩR1 , we thus have

∣u∣2,q;ΩR1 + λ∥∂1u∥q;ΩR1 + ∣p∣1,q;ΩR1 ≤ ∣v∣2,q + λ∥∂1v∥q + ∣p∣1,q
≤ c2∥F ∥q ≤ c3(∥f∥q + (1 + λ)∥u∥1,q;ΩR1

+ ∥p∥q;ΩR1
).

(3.17)

To derive the estimate near the boundary, we use another cut-off function
χ1 ∈ C∞0 (Rn) with χ1 ≡ 1 on BR1 and χ1 ≡ 0 on BR, and we set w ∶= χ1u
and q ∶= χ1p. Then (w,q) ∈W2,q(Ω) ×W1,q(Ω) is a solution to the Stokes
problem
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆w +∇q = χ1f − 2∇χ1 ⋅ ∇u −∆χ1u + χ1λ∂1u + p∇χ1 in ΩR,

divw = u ⋅ ∇χ1 in ΩR,

w = 0 on ∂ΩR.

From Theorem 2.4.5 we conclude that (w,q) is subject to the estimate

∥w∥2,q + ∥∇q∥q ≤ C15(∥f∥q + (1 + λ)∥u∥1,q;ΩR
+ ∥p∥q;ΩR

).

Since u = w and p = q on ΩR1 , a combination of this estimate with (3.17)
yields (3.14) for all q ∈ (1, r].

Using u ∈ D2,r(Ω) and p ∈ D1,r(Ω) and Sobolev embeddings, we now
obtain u ∈ W1,r1

loc (Ω) and p ∈ Lr1
loc(Ω) for r1 = nr/(n − 1) > r, and we can

repeat the above argument with r replaced by r1. By classical bootstrap
argument, we thus obtain estimate (3.14) for all q ∈ (1,∞).

After these preparations, we can now establish the following theorem
that gives sufficient conditions for the right-hand side f such that the
velocity field u is an element of W2,q(Ω).
Theorem 3.1.10. Let Ω ⊂ Rn, n ≥ 2, be an exterior domain of class C2,
and let q ∈ (1,∞), r ∈ (n+1n , n + 1), 0 < λ ≤ λ0. Set s ∶= (n+1)rn+1−r . Then, for
every f ∈ Lq(Ω)n ∩D−1,r0 (Ω)n there exists a solution

u ∈ D2,q(Ω)n ∩D1,r(Ω)n ∩ Ls(Ω)n, p ∈ D1,q(Ω)
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to (3.1). This solution obeys the estimates

∣u∣1,r + λ
1+δ
n+1 ∥u∥s ≤ C23λ

− M
n+1 ∣f ∣−1,r, (3.18)

∣u∣2,q + λ∥∂1u∥q + ∣p∣1,q ≤ C23(∥f∥q + λ−
M
n+1 ∣f ∣−1,r) (3.19)

for some constant C23 = C23(n, q, r,Ω, λ0) > 0, where

M =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2 if n+1
n < r ≤ n

n−1 ,

0 if n
n−1 < r < n,

1 if n ≤ r < n + 1,
δ =
⎧⎪⎪⎨⎪⎪⎩

1 if n = r = 2,
0 else.

(3.20)

In particular, if s ≤ q, then u ∈W2,q(Ω)n and

λ
(1+δ)θ
n+1 ∥u∥q + λ

(1+δ)θ
2(n+1) ∣u∣1,q + ∣u∣2,q ≤ C23(∥f∥q + λ−

M
n+1 ∣f ∣−1,r) (3.21)

where

θ ∶= 2qs

n(q − s) + 2qs ∈ [0,1]. (3.22)

Moreover, if (u1,p1) is another solution to (3.1) that belongs to the same
function class as (u,p), then u = u1 and p = p1+c for some constant c ∈ R.

Additionally, if r ∈ ( n
n−1 , n), one can choose p such that p ∈ Lr(Ω).

Moreover, this implies ∂1u ∈ D−1,r(Ω) and the estimate

∥p∥r + λ∣∂1u∣−1,r ≤ C24∣f ∣−1,r (3.23)

for some constant C24 = C24(n, r,Ω, λ0) > 0.

Proof. For the moment, consider f ∈ C∞0 (Ω), and let (u,p) be the unique
weak solution to (3.1) satisfying (3.18), which exists due to Theorem 3.1.6.
This further yields (3.23) if n/(n − 1) < r < n. By Lemma 3.1.9, from
f ∈ C∞0 (Ω)n we conclude u ∈ D2,q(Ω)n, ∂1u ∈ Lq(Ω)n, p ∈ D1,q(Ω) and
the validity of (3.14). Next, let us remove the norms of u and p on the
right-hand side of (3.14). Corollary 2.3.6 yields the estimates

∥u∥q;ΩR
≤ c0(∥u∥s + ∣u∣1,r) + ε∣u∣2,q,

∥∇u∥q;ΩR
≤ c1∣u∣1,r + ε∣u∣2,q,

∥p∥q;ΩR
≤ c2∥p∥r;ΩR

+ ε∣p∣1,q.
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Choosing ε > 0 sufficiently small and combining these with the estimate
(3.14), we arrive at

∣u∣2,q + λ∥∂1u∥q + ∣p∣1,q ≤ c3(1 + λ2)(∥f∥q + ∥u∥s + ∣u∣1,r + ∥p∥r;ΩR
).

From (3.18) and λ ≤ λ0 we now conclude (3.19) in the case f ∈ C∞0 (Ω).
Now consider general f ∈ Lq(Ω) ∩D−1,r0 (Ω). By Proposition 2.3.1, there

exists a sequence (fj) ⊂ C∞0 (Ω) that converges to f . Let (uj,pj) be the
unique solution to (3.1) with right-hand side fj that satisfies (3.18) and
(3.19). Then the differences (uj −uk,pj − pk) satisfy (3.1) with right-hand
side fj − fk and corresponding estimates. Since (fj) is a Cauchy sequence
in Lq(Ω) ∩ D−1,r0 (Ω), the solutions (uj,pj) constitute a Cauchy sequence
with respect to the norms on the right-hand side of (3.18) and (3.19).
Thus, there exists a limit (u,p), which satisfies (3.18) and (3.19) and is
a solution to (3.1) with right-hand side f . In the same way we see that
(3.23) is satisfied if n/(n − 1) < r < n.

Moreover, for s ≤ q we can employ the Gagliardo–Nirenberg inequality
(Theorem 2.3.7) with θ ∈ [0,1] given in (3.22) to obtain

∥u∥q ≤ c4∥u∥θs∣u∣
1−θ
2,q ≤ c5λ−

(1+δ)θ
n+1 (∥f∥q + λ−

M
n+1 ∣f ∣−1,r)

and
∣u∣1,q ≤ c6∥u∥

1/2
q ∣u∣1/22,q ≤ c7λ

− (1+δ)θ
2(n+1) (∥f∥q + λ−

M
n+1 ∣f ∣−1,r),

where we used (3.18) and (3.19). This shows u ∈ W2,q(Ω) together with
estimate (3.21) and completes the proof.

Remark 3.1.11. Note that the condition s ≤ q is equivalent to 1
q ≤ 1

r − 1
n+1 .

Therefore, the assumption r > n+1
n in Theorem 3.1.10 implies the necessary

condition q > n+1
n−1 . Consequently, for any q ∈ (n+1n−1 ,∞) one can find suitable

r such that for any f ∈ Lq(Ω)n ∩ D−1,r0 (Ω)n there exists a solution with
velocity field u in the inhomogeneous Sobolev space W2,q(Ω)n.

3.2 The Time-Periodic Oseen System
After having dealt with the steady-state Oseen problem (3.1) in an exterior
domain Ω ⊂ Rn, n ≥ 2, we now turn to the time-periodic Oseen problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu −∆u − λ∂1u +∇p = f in T ×Ω,
divu = 0 in T ×Ω,

u = 0 on T × ∂Ω,
lim
∣x∣→∞

u(t, x) = 0 for t ∈ T,

(3.24)
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with f ∶T × Ω → Rn a given time-periodic external force and u∶T × Ω →
Rn and p∶T × Ω → R the unknown time-periodic velocity and pressure
fields. The main idea of our approach is to first single out the steady-
state part (Pu,Pp) of the solution (u,p), which can be dealt with by
applying the theory from the previous section. It thus remains to examine
the remaining purely periodic part (P�u,P�p), which, as it turns out, has
better functional analytic properties. More precisely, in contrast to the
observation for the steady-state problem, the velocity field P�u directly
belongs to the full Sobolev space W1,2,q(T × Ω) for any right-hand side
P�f ∈ Lq(T × Ω). Subsequently, we combine the results for the steady-
state problem and the purely periodic problem to obtain a solution theory
for the full time-periodic Oseen problem (3.24).

3.2.1 The Purely Periodic Problem
Here we study well-posedness of the time-periodic Oseen problem (3.24)
when the right-hand side f is purely periodic, that is, Pf = 0. We obtain
that for any f ∈ Lq

�(T × Ω), the solution (u,p) is also purely periodic,
and the velocity field u belongs to the full Sobolev space W1,2,q(T × Ω).
This may be seen as the main difference in comparison to the steady-
state problem (3.1), for which we stated different well-posedness results
for strong solutions, namely Theorem 3.1.1 and Theorem 3.1.10.
Theorem 3.2.1. Let Ω ⊂ Rn, n ≥ 2, be an exterior domain of class C2,
q ∈ (1,∞) and 0 ≤ λ < λ0. For any f ∈ Lq

�(T ×Ω)n there is a solution

(u,p) ∈W1,2,q
� (T ×Ω)n × Lq

�(T;D1,q(Ω))
to (3.24), which satisfies

∥u∥1,2,q + ∥∇p∥q ≤ C25∥f∥q (3.25)

for a constant C25 = C25(n,Ω, q,T , λ0) > 0. If (u1,p1) ∈W1,2,q
� (T × Ω)n ×

Lq
�(T;D1,q(Ω)) is another solution to (3.24), then u = u1 and p = p1 + p0

for some spatially constant function p0∶T→ R.
Proof. The result for n = 3 has been established in [50, Theorem 5.1]. The
general case n ≥ 2 is proved along the same lines.

Remark 3.2.2. Observe that Theorem 3.2.1 also includes the Stokes case
(λ = 0). One can thus obtain well-posedness for the time-periodic Stokes
problem by combining Theorem 3.2.1 with the well-known theory for the
steady-state Stokes problem in an exterior domain, which can be found in
[42, Chapter V] for example.
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3.2.2 The Full Time-Periodic Problem
In order to treat the time-periodic Oseen problem (3.24) for general right-
hand sides f , that is, without the restriction Pf = 0, we use the projec-
tion P to decompose problem (3.24) into two independent problems: The
steady-state problem (3.1) and the purely periodic problem examined in
the previous section. As two different well-posedness results for the steady-
state problem are available (Theorem 3.1.1 and Theorem 3.1.10), we con-
clude two different well-posedness results for the time-periodic problem by
combining each of them with Theorem 3.2.1.

We split the solution (u,p) into steady-state part (v, p) and purely
periodic part (w,q) given by

v ∶= Pu, p ∶= Pp, w ∶= P�u, q ∶= P�p.

By application of P and P� to (3.24), the problem is decomposed into the
steady-state problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆v − λ∂1v +∇p = Pf in Ω,

div v = 0 in Ω,

v = 0 on ∂Ω,

(3.26)

and the purely periodic problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tw −∆w − λ∂1w +∇q = P�f in T ×Ω,
divw = 0 in T ×Ω,

w = 0 on T × ∂Ω,
(3.27)

which we treat separately.
The following theorem is a combination of Theorem 3.1.1 and Theo-

rem 3.2.1, and it treats right-hand sides f ∈ Lq(T × Ω). However, the
steady-state part Pu of the velocity field u merely belongs to homoge-
neous Sobolev spaces as in Theorem 3.1.1.

Theorem 3.2.3. Let Ω ⊂ Rn, n ≥ 2 be an exterior domain of class C2,
and let q ∈ (1, n+12 ) and 0 < λ ≤ λ0. Then, for every f ∈ Lq(T×Ω)n there is
a solution (u,p) = (v +w,p + q) to (3.24) with

v ∈Xq
λ(Ω), p ∈ D1,q(Ω),

w ∈W1,2,q
� (T ×Ω)n, q ∈ Lq

�(T;D1,q(Ω)),
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which satisfies

∥v∥Xq
λ
(Ω) + ∥∇p∥q ≤ C26∣Pf ∣q, (3.28)

∥w∥1,2,q + ∥∇q∥q ≤ C27∥P�f∥q (3.29)

for constants C26 = C26(n,Ω, q, λ) > 0 and C27 = C27(n,Ω, q,T , λ0) > 0.
However, if q ∈ (1, n2 ), then C26 = C26(n,Ω, q, λ0), that is, C26 is indepen-
dent of λ.

Moreover, if (u1,p1) is another solution to (3.24) that belongs to the
same function class as (u,p), then u = u1 and p = p1+p0 for some spatially
constant function p0∶T→ R.

Proof. For existence, let f ∈ Lq(T × Ω). Then we have Pf ∈ Lq(Ω) and
P�f ∈ Lq

�(T × Ω). By Theorem 3.1.1 and Theorem 3.2.1 there exist solu-
tions (v, p) and (w,q) to (3.26) and (3.27) that satisfy (3.28) and (3.29),
respectively. Moreover, (u,p) = (v + w,p + q) is a solution to the time-
periodic problem (3.24). To show the uniqueness statement, let (u,p) be
the difference of two solutions for the same right-hand side f , that is, a so-
lution to (3.24) for f = 0. Then the steady-state part (v, p) and the purely
periodic part (w,q) satisfy (3.26) and (3.27) with Pf = 0 and P�f = 0, re-
spectively. The uniqueness statement then follows from the corresponding
result in Theorem 3.1.1 and Theorem 3.2.1.

Remark 3.2.4. A different combination of Theorem 3.1.1 and Theorem
3.2.1 would yield a different well-posedness result for the time-periodic
problem (3.24). For example, one can extend Theorem 3.2.3 to the case

f ∈ Lq1(Ω) ⊗ Lq2
� (T ×Ω)

even if q1 ≠ q2 by combining Theorem (3.1.1) for q = q1 with Theorem
(3.2.1) for q = q2. One could also impose additional conditions, for exam-
ple, in the purely periodic component and to consider

f ∈ Lq1(Ω) ⊕ (Lq2
� (T ×Ω) ∩ Lq3

� (T ×Ω)).

This can be used to derive existence of a time-periodic solution to the
Navier–Stokes equations, as was shown in [50].

In the very same way, we next combine Theorem 3.1.10 and Theorem
3.2.1. Here, besides f ∈ Lq(T × Ω) we demand Pf ∈ D−1,r0 (Ω) from the
right-hand side. We then obtain a solution (u,p) where also the steady-
state velocity field Pu belongs to the full Sobolev space W2,q(Ω).
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Theorem 3.2.5. Let Ω ⊂ Rn, n ≥ 2, and let q ∈ (1,∞), r ∈ (n+1n , n + 1)
and 0 < λ ≤ λ0. Set s ∶= (n+1)rn+1−r . Then, for every f ∈ Lq(T × Ω)n with
Pf ∈ D−1,r(Ω)n there is a solution (u,p) = (v +w,p + q) to (3.24) with

v ∈ D2,q(Ω)n ∩D1,r(Ω)n ∩ Ls(Ω)n, p ∈ D1,q(Ω),
w ∈W1,2,q

� (T ×Ω)n, q ∈ Lq
�(T;D1,q(Ω)),

which satisfies

∣v∣1,r + λ
1+δ
n+1 ∥v∥s ≤ C28λ

− M
n+1 ∣Pf ∣−1,r, (3.30)

∣v∣2,q + λ∥∂1v∥q + ∥∇p∥q ≤ C28(∥Pf∥q + λ−
M
n+1 ∣Pf ∣−1,r), (3.31)

∥w∥1,2,q + ∥∇q∥q ≤ C28∥P�f∥q (3.32)

for a constant C28 = C28(q, r,Ω, λ0,T ) > 0 and M and δ as in (3.20).
Moreover, if (u1,p1) is another solution to (3.24) that belongs to the same
function class as (u,p), then u = u1 and p = p1 + p0 for some spatially
constant function p0∶T→ R.

In particular, if s ≤ q, then u ∈W1,2,q(T ×Ω)n and

λ
(1+δ)θ
n+1 ∥v∥q + λ

(1+δ)θ
2(n+1) ∣v∣1,q + ∣v∣2,q ≤ C28(∥Pf∥q + λ−

M
n+1 ∣Pf ∣−1,r) (3.33)

where θ ∈ [0,1] is given in (3.22).

Proof. For existence, let f ∈ Lq(T × Ω). Then Pf ∈ Lq(Ω) ∩ D−1,q(Ω)
and P�f ∈ Lq

�(T ×Ω). By Theorem 3.1.10 and Theorem 3.2.1 there exist
solutions (v, p) and (w,q) to (3.26) and (3.27), respectively, that satisfy
(3.30), (3.31) and (3.32) Moreover, (u,p) = (v+w,p+q) is a solution to the
time-periodic problem (3.24). To show the uniqueness, let (u,p) be the
difference of two solutions for the same right-hand side f , that is, a solution
to (3.24) for f = 0. Then the steady-state part (v, p) and the purely
periodic part (w,q) satisfy (3.26) and (3.27) with Pf = 0 and P�f = 0,
respectively. The uniqueness statement follows from the corresponding
result in Theorem 3.1.10 and Theorem 3.2.1.

Remark 3.2.6. The observation made in Remark 3.1.11 applies to Theorem
3.2.5 as well: For any q ∈ (n+1n−1 ,∞) we can find a suitable r such that for any
f ∈ Lq(T × Ω)n with Pf ∈ D−1,r(Ω)n there exists a solution with velocity
field u in the inhomogeneous Sobolev space W1,2,q(T ×Ω)n.
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Remark 3.2.7. Here we can make the same observation as in Remark 3.2.4.
One can combine Theorem 3.1.10 and Theorem 3.2.1 in a different way to
obtain a well-posedness result for (3.24) that allows for

f ∈ (Lq1(Ω)n ∩D−1,r(Ω)n) ⊕ Lq2
� (T ×Ω)n

with q1 ≠ q2 and suitable r. However, this is not necessary to obtain a
solution to the corresponding nonlinear problem; see Theorem 3.3.4 below.

3.3 Solutions to the Navier–Stokes Equations
Here we employ the previously derived linear theory for the steady-state
and the purely periodic Oseen systems in order to find solutions (u,p)
to the corresponding nonlinear Navier–Stokes problems. Note that, as
mentioned beforehand, we give appropriate conditions for f such that the
velocity field u (or its steady-state part Pu in the time-periodic setting)
belongs to the full Sobolev space W2,q(Ω)n. The main idea of our approach
is to reformulate the nonlinear problems as fixed-point problems for the
velocity field u, which we solve by means of Banach’s fixed-point theorem.
Observe that our approach only yields a solution in dimension n ≥ 3.

3.3.1 The Steady-State Navier–Stokes Problem
Here we consider the steady-state Navier–Stokes problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∆v − λ∂1v +∇p + v ⋅ ∇v = f in Ω,

div v = 0 in Ω,

v = −λ e1 on ∂Ω,

lim
∣x∣→∞

v(x) = 0,

(3.34)

where Ω is an exterior domain of Rn, n ≥ 3, and f ∶Ω→ Rn is a given exter-
nal force, whereas v∶Ω → Rn and p∶Ω → R are the unknown velocity and
pressure fields, respectively. We consider the case of non-vanishing veloc-
ity “at infinity”, which corresponds to a non-vanishing Reynolds number
λ ≠ 0. Without loss of generality, we may assume λ > 0.

To show existence of a solution to (3.34) under the assumption of
“small” data, we combine Theorem 3.1.10 with the contraction mapping
theorem. For this purpose, we first reformulate (3.34) as a problem with
homogeneous boundary conditions by means of a classical lifting proce-
dure, which relies on the following simple lemma.
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Lemma 3.3.1. Let R > δ(Ωc). There exists a function V ∈ C∞0 (Rn)n with
suppV ⊂ BR, divV ≡ 0 and V ∣∂Ω = e1.

Proof. Consider a second radius R0 > 0 with δ(Ωc) < R0 < R, and let
ϕ ∈ C∞0 (Rn) with ϕ ≡ 1 on BR0 and ϕ ≡ 0 on BR. We define the function
V ∶Rn → Rn by

V (x) ∶= 1

2
[∆ −∇div ](ϕ(x)x22 e1).

Then V ∈ C∞0 (Rn)n, suppV ⊂ BR and

divV (x) = 1

2
[div∆ −∆div ](ϕ(x)x22 e1) = 0.

Moreover, for x ∈ ∂Ω we have ∣x∣ < R0, and therefore

V (x) = 1

2
[∆ −∇div ](x22 e1) =

1

2
[2 e1 −0] = e1 .

This completes the proof.

Now we set u ∶= v + λV , p ∶= p. Then (v, p) is a solution to (3.34) if and
only if (u,p) is a solution to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∆u − λ∂1u +∇p = f +Nλ(u) in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω,

lim
∣x∣→∞

u(x) = 0,

(3.35)

where

Nλ(u) = −(u − λV ) ⋅ ∇(u − λV ) − λ∆V − λ2∂1V. (3.36)

In order to show existence of a solution to the new system (3.35), we
first introduce an appropriate functional framework. For q ∈ (1,∞) and
r ∈ (n+1n , n + 1) we define the function space

X q,r
λ (Ω) ∶= {u ∈ D2,q(Ω)n ∩D1,r(Ω)n ∩ Ls(Ω)n ∣ divu = 0, u∣∂Ω = 0},

equipped with the norm

∥u∥X q,r
λ
∶= ∣u∣2,q + ∣u∣1,r + λ

1
n+1 ∥u∥s, s ∶= (n + 1)r

n + 1 − r . (3.37)
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Then X q,r
λ (Ω) is a Banach space. We introduce the solution operator

Sλ∶Lq(Ω)n ∩D−1,r0 (Ω)n → X q,r
λ (Ω), f ↦ u, (3.38)

that maps f ∈ Lq(Ω)n ∩D−1,r0 (Ω)n to the unique velocity field u ∈ X q,r
λ (Ω)

of a solution (u,p) to the steady-state Oseen problem (3.1) existing due
to Theorem 3.1.10. This defines a family of continuous linear operators
with

∥Sλf∥X q,r
λ
≤ C23(∥f∥q + λ−

M
n+1 ∣f ∣−1,r), (3.39)

with M as in (3.20) and C23 independent of λ ∈ (0, λ0], which follows from
estimates (3.18) and (3.19). Moreover, we see that (u,p) with u ∈ X q,r

λ (Ω)
is a solution to (3.35) if and only if u satisfies the fixed-point equation

u = Sλ(f +Nλ(u)), (3.40)

provided that f and Nλ(u) are elements of Lq(Ω)n ∩D−1,r0 (Ω)n. The next
lemma shows that the latter is satisfied for u ∈ X q,r

λ (Ω) if

1

3q
≤min{ 1

n
,
1

r
− 1

n + 1}, (3.41)

1

2r
≥max{ 1

n + 1 ,
1

q
− 2

n
}. (3.42)

Lemma 3.3.2. Let q, r ∈ (1,∞) satisfy (3.41) and (3.42), and let 0 < λ ≤
λ0. Then there exists a constant C29 = C29(n,Ω, q, r, λ0) > 0 such that

∥u1 ⋅ ∇u2∥q ≤ C29λ
− θ

n+1 ∥u1∥X q,r
λ
∥u2∥X q,r

λ
, (3.43)

∣u1 ⋅ ∇u2∣−1,r ≤ C29λ
− η

n+1 ∥u1∥X q,r
λ
∥u2∥X q,r

λ
(3.44)

for all u1, u2 ∈ X q,r
λ (Ω), where θ, η ∈ [0,2] satisfy

(2
s
+ 3

n
− 5

2q
)θ = 2

s
+ 4

n
− 2

q
, (1

s
+ 2

n
− 1

q
)η = 1

r
+ 4

n
− 2

q
.

Proof. We choose θ1 ∈ [0,1] and θ2 ∈ [12 ,1] such that

(1
s
+ 2

n
− 1

q
)θ1 =

1

s
− 1

3q
, (1

s
+ 2

n
− 1

q
)θ2 =

1

s
+ 1

n
− 2

3q
,

which is possible due to condition (3.41). Note that this demands θ1 = 1
or θ2 = 1 if and only if q = n/3, in which case 2 − n/q < 0, so that θ1 = 1
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and θ2 = 1 is admissible. Therefore, the Gagliardo–Nirenberg inequality
(Theorem 2.3.7) implies

∥u1∥3q ≤ c0∣u1∣θ12,q∥u1∥1−θ1s , ∣u2∣1,3q/2 ≤ c1∣u2∣
θ2
2,q∥u2∥1−θ2s .

An application of Hölder’s inequality thus yields

∥u1 ⋅ ∇u2∥q ≤ ∥u1∥3q∥∇u2∥3q/2 ≤ c2∣u1∣θ12,q∥u1∥1−θ1s ∣u2∣θ22,q∥u2∥1−θ2s

≤ c3λ−
θ

n+1 ∥u1∥X q,r
λ
∥u2∥X q,r

λ
,

which is (3.43) with θ ∶= 2 − θ1 − θ2. Next consider η0 ∈ [0,1] such that

(1
s
+ 2

n
− 1

q
)η0 =

1

s
− 1

2r
,

which is possible due to (3.41) and (3.42). Moreover, we have η0 = 1 if
and only if 1/r = 2/q − 4/n, in which case 2 − n/q < 0, so that η0 = 1
is admissible. Another application of the Gagliardo–Nirenberg inequality
(Theorem 2.3.7) then implies

∥uj∥2r ≤ c4∣uj ∣η02,q∥uj∥1−η0s

for j = 1,2. Now Hölder’s inequality and the identity u1 ⋅∇u2 = div(u1⊗u2)
lead to

∣u1 ⋅ ∇u2∣−1,r ≤ c5∥u1 ⊗ u2∥r ≤ c6∥u1∥2r∥u2∥2r ≤ c7λ−
η

n+1 ∥u1∥X q,r
λ
∥u2∥X q,r

λ

with η ∶= 2 − 2η0.

The following technical lemma enables us to employ a fixed-point argu-
ment in the end.

Lemma 3.3.3. Let q, r ∈ (1,∞) satisfy (3.41) and (3.42) and

r >
⎧⎪⎪⎨⎪⎪⎩

n
n−1 if n = 3,4,
n+1
n if n ≥ 5.

(3.45)

Then max{θ,M +η} < n+1−M with M as in (3.20) and θ, η as in Lemma
3.3.2.
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3.3 Solutions to the Navier–Stokes Equations

Proof. Clearly, since M ≤ 2, we have θ ≤ 2 < n + 1 −M for all n ≥ 4. For
n = 3 we also have θ ≤ 2 < n + 1 −M since M ≤ 1 in this case by (3.45).

Now consider the term M + η, which clearly satisfies M + η ≤ 4. By
Lemma 3.3.2 we have η = 2 if and only if r = (n + 1)/2, which implies
M = 0. Therefore, we have M + η < 4 ≤ n+ 1−M for all n > 5 since M ≤ 2.
Moreover, we have M + η < 3 ≤ n + 1 −M if n ∈ {3,4} since M ≤ 1 in this
case by (3.45).

In total, we obtain max{θ,M + η} < n + 1 −M .

After these technical preparations, we finally prove existence of a solu-
tion to (3.34) by resolving the fixed-point equation (3.40) by means of the
contraction mapping principle.

Theorem 3.3.4. Let Ω ⊂ Rn, n ≥ 3, be an exterior domain of class
C2, and let q, r ∈ (1,∞) satisfy (3.41), (3.42) and (3.45). Then there
exists λ0 > 0 such that for all 0 < λ ≤ λ0 there is ε > 0 such that for all
f ∈ Lq(Ω)n ∩D−1,r0 (Ω)n satisfying ∥f∥q + ∣f ∣−1,r ≤ ε there exists a pair (v, p)
with

v ∈ D2,q(Ω)n ∩D1,r(Ω)n ∩ L
(n+1)r
n+1−r (Ω)n,

∂1v ∈ Lq(Ω)n,
p ∈ D1,q(Ω)

satisfying (3.34). In particular, if s ≤ q, then v ∈W2,q(Ω)n.

Remark 3.3.5. Note that the additional assumption s ≤ q is equivalent to
1
q ≤ 1

r − 1
n+1 . In this case, (3.45) thus leads to the necessary conditions

q > n(n + 1)
n2 − n − 1 if n = 3,4, q > n + 1

n − 1 if n ≥ 5.

Proof. It suffices to show existence of a function u ∈ X q,r
λ (Ω) satisfying the

fixed-point equation (3.40), that is, u is a fixed point of the mapping

Fλ∶ X q,r
λ (Ω) → X

q,r
λ (Ω), u↦ Sλ(f +Nλ(u))

with Nλ(u) and Sλ given in (3.36) and (3.38), respectively. Note that Fλ

is well defined since we have Nλ(u) ∈ Lq(Ω) ∩D−1,r0 (Ω) for all u ∈ X q,r
λ (Ω)

by Lemma 3.3.2. Now define the closed subset

Aρ ∶= {u ∈ X q,r
λ (Ω) ∣ ∥u∥X q,r

λ
≤ ρ}
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of X q,r
λ (Ω), where the radius ρ > 0 will be chosen below. By Lemma 3.3.2,

for u ∈ Aρ we have

∥Nλ(u)∥q ≤ c0λ−
θ

n+1 ∥u − λV ∥2X q,r
λ
+ ∥λ∆V + λ2∂1V ∥q

≤ c1(λ−
θ

n+1 (ρ + λ)2 + λ + λ2),
∣Nλ(u)∣−1,r ≤ c2λ−

η
n+1 ∥u − λV ∥2X q,r

λ
+ ∣λ∆V + λ2∂1V ∣−1,r

≤ c3(λ−
η

n+1 (ρ + λ)2 + λ + λ2),

where we used that ∥V ∥X q,r
λ

is bounded uniformly for 0 < λ ≤ λ0. From
(3.39) we thus conclude

∥Fλ(u)∥X q,r
λ
≤ c4(∥f +Nλ(u)∥q + λ−

M
n+1 ∣f +Nλ(u)∣−1,r)

≤ c5((1 + λ−
M
n+1 )ε + (λ− θ

n+1 + λ−M+η
n+1 )(ρ + λ)2 + (1 + λ− M

n+1 )(λ + λ2)).

Similarly, for u1, u2 ∈ Aρ we obtain

∥Fλ(u1) − Fλ(u2)∥X q,r
λ

≤ c6(∥Nλ(u1) −Nλ(u2)∥q + λ−
M
n+1 ∣Nλ(u1) −Nλ(u2)∣−1,r)

≤ c7(λ−
θ

n+1 + λ−M+η
n+1 )(∥u1 + λV ∥X q,r

λ
+ ∥u2 + λV ∥X q,r

λ
)∥u1 − u2∥X q,r

λ

≤ c8(λ−
θ

n+1 + λ−M+η
n+1 )(ρ + λ)∥u1 − u2∥X q,r

λ
.

By Lemma 3.3.3 we have max{θ,M + η} < n + 1 −M . Therefore, there
exists γ ∈ R with

1 ≤ n + 1
n + 1 −M < γ <

n + 1
max{θ,M + η} . (3.46)

Now we choose ε = ργ = λ ≤ λ0 ≤ 1. Then the above estimates reduce to

∥Fλ(u)∥X q,r
λ

≤ c9(ργ + ργ−
γM
n+1 + (ρ− γθ

n+1 + ρ−γM+η
n+1 )(ρ + ργ)2 + (1 + ρ− γM

n+1 )(ργ + ρ2γ))
≤ c10(ργ−1 + ργ−γ

M
n+1−1 + ρ1− γθ

n+1 + ρ1−γM+η
n+1 )ρ

and

∥Fλ(u1) − Fλ(u2)∥X q,r
λ
≤ c11(ρ−

γθ
n+1 + ρ−γM+η

n+1 )(ρ + ργ)∥u1 − u2∥X q,r
λ

≤ c12(ρ1−
γθ
n+1 + ρ1−γM+η

n+1 )∥u1 − u2∥X q,r
λ
.
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By (3.46), we can choose λ0 > 0 so small that

c10(ργ−1 + ργ−γ
M
n+1−1 + ρ1− γθ

n+1 + ρ1−γM+η
n+1 ) ≤ 1,

c12(ρ1−γ
θ

n+1 + ρ1−γM+η
n+1 ) ≤ 1

2

for all ρ ≤ λ1/γ0 . This ensures that Fλ∶Aρ → Aρ is a contractive self-
mapping for all λ ∈ (0, λ0]. The contraction mapping principle thus yields
the existence of a fixed point u of Fλ, that is, of an element u ∈ X q,r

λ (Ω)
that satisfies (3.40). In particular, by the definition of Sλ, there exists
a pressure field p such that (3.35) is satisfied, and ∂1u ∈ Lq(Ω) and p ∈
D1,q(Ω). Finally, since V ∈ C∞0 (Rn), the functions v ∶= u − λV and p ∶= p
form a solution to the original problem (3.35) with the asserted properties.

3.3.2 The Time-Periodic Navier–Stokes Problem
Next we consider the time-periodic Navier–Stokes problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tv −∆v − λ∂1v +∇p + v ⋅ ∇v = f in T ×Ω,
div v = 0 in T ×Ω,

v = −λ e1 on T × ∂Ω,
lim
∣x∣→∞

v(t, x) = 0 for t ∈ T.

(3.47)

As before, Ω is an exterior domain of Rn, n ≥ 3. The function f ∶T×Ω→ Rn

describes a given time-periodic external force, whereas v∶T ×Ω → Rn and
p∶T×Ω→ R are the unknown (time-periodic) velocity and pressure fields,
respectively. As before, we consider the case of non-vanishing fluid flow
“at infinity”, that is, without loss of generality, λ > 0.

As in the previous subsection, in order to show existence of a solution
(v, p) to (3.47), we reformulate the system as a problem with homogeneous
boundary condition by means of the function V introduced in Lemma
3.3.1. Set u(t, x) ∶= v(t, x) + λV (x) and p ∶= p. Then (v, p) is a T -time-
periodic solution to (3.47) if and only if (u,p) is a T -time-periodic solution
to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu −∆u − λ∂1u +∇p = f +Nλ(u) in T ×Ω,
divu = 0 in T ×Ω,

u = 0 on T × ∂Ω,
lim
∣x∣→∞

u(t, x) = 0 for t ∈ T,

(3.48)
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where Nλ(u) is defined as in (3.36). To show existence of a solution to
this new system, we shall again employ a fixed-point argument within an
appropriate functional framework. For q ∈ (1,∞) and r ∈ (n+1n , n + 1) we
define the function space

Zq,r
λ (T ×Ω) ∶= {u ∈W1,2,q(T ×Ω)n ∣ divu = 0, u∣T×∂Ω = 0, ∥u∥Zq,r

λ
< ∞},

where

∥u∥Zq,r
λ
∶= ∥Pu∥X q,r

λ
+ ∥P�u∥1,2,q = ∣Pu∣2,q + ∣Pu∣1,r + λ

1
n+1 ∥Pu∥s + ∥P�u∥1,2,q,

with ∥⋅∥X q,r
λ

and s as in (3.37). Then Zq,r
λ (T×Ω) is a Banach space provided

s ≤ q. We consider the solution operator

Sλ∶ (Lq(Ω)n ∩D−1,r0 (Ω)n) ⊕ Lq
�(T ×Ω)n → Zq,r

λ (T ×Ω), f ↦ u (3.49)

that maps a function f ∈ Lq(T × Ω)n with Pf ∈ D−1,r(Ω)n to the unique
velocity field u associated to a solution (u,p) ∈ Zq,r

λ (T×Ω)×Lq(T;D1,q(Ω))
to the time-periodic Oseen problem (3.24) existing due to Theorem 3.2.5.
This yields a family of continuous linear operators with

∥Sλf∥Zq,r
λ
≤ C28(∥f∥q + λ−

M
n+1 ∣Pf ∣−1,r), (3.50)

with M as in (3.20) and C28 independent of λ ∈ (0, λ0], which follows from
Theorem 3.2.5. Moreover, we see that (u,p) with u ∈ Zq,r

λ (T × Ω) is a
solution to (3.48) if and only if u satisfies the fixed-point equation

u = Sλ(f +Nλ(u)), (3.51)

provided that f and Nλ(u) are elements of Lq(T × Ω) with steady-state
parts Pf and PNλ(u) in D−1,r0 (Ω)n. The following lemma shows that
Nλ(u) belongs to this function class for u ∈ Zq,r

λ (T × Ω) provided that
q, r ∈ (1,∞) satisfy

1

q
≤min{ 3

n + 2 ,
1

r
− 1

n + 1}, (3.52)

1

q
≥ 1

2r
≥max{ 1

n + 1 ,
1

q
− 2

n
}. (3.53)

Lemma 3.3.6. Let q, r ∈ (1,∞) satisfy (3.52) and (3.53). Let 0 < λ ≤ λ0
and u1, u2 ∈ Zq,r

λ (T ×Ω). Set vj ∶= Puj, wj ∶= P�uj for j = 1,2. Then there
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3.3 Solutions to the Navier–Stokes Equations

exist a constant C30 = C30(n,Ω, q, r, λ0) > 0 and some ζ ∈ [0,1) such that

∥v1 ⋅ ∇v2∥q ≤ C30λ
− θ

n+1 ∥v1∥X q,r
λ
∥v2∥X q,r

λ
, (3.54)

∣v1 ⋅ ∇v2∣−1,r ≤ C30λ
− η

n+1 ∥v1∥X q,r
λ
∥v2∥X q,r

λ
, (3.55)

∥w1 ⋅ ∇w2∥q ≤ C30∥w1∥1,2,q∥w2∥1,2,q, (3.56)
∣P(w1 ⋅ ∇w2)∣−1,r ≤ C30∥w1∥1,2,q∥w2∥1,2,q, (3.57)

∥v1 ⋅ ∇w2∥q ≤ C30λ
− ζ

n+1 ∥v1∥X q,r
λ
∥w2∥1,2,q, (3.58)

∥w1 ⋅ ∇v2∥q ≤ C30λ
− ζ

n+1 ∥w1∥1,2,q∥v2∥X q,r
λ
, (3.59)

where θ, η ∈ [0,2] as in Lemma 3.3.2.

Proof. Since (3.52) and (3.53) imply (3.41) and (3.42), the estimates (3.54)
and (3.55) are direct consequences of Lemma 3.3.2.

To derive (3.56), we distinguish two cases. On the one hand, if q >
max{2, n/2}, the embeddings from Theorem 2.3.8 yield

∥w∥Lq(T;L∞(Ω)) + ∥∇w∥L∞(T;Lq(Ω)) ≤ c0∥w∥1,2,q

for w ∈W1,2,q(T ×Ω). Then Hölder’s inequality implies

∥w1 ⋅ ∇w2∥q ≤ ∥w1∥Lq(T;L∞(Ω))∥∇w2∥L∞(T;Lq(Ω)) ≤ c1∥w1∥1,2,q∥w2∥1,2,q.

On the other hand, if q < (n + 1)/2, from q ≥ (n + 2)/3 and Theorem 2.3.8
(with α = 1/q and β = 3 − (n + 1)/q) we conclude

∥w∥
L2q(T;L

nq
n+1−2q (Ω))

+ ∥∇w∥
L2q(T;L

nq
2q−1 (Ω))

≤ c2∥w∥1,2,q

for w ∈W1,2,q(T ×Ω), which leads to

∥w1 ⋅ ∇w2∥q ≤ ∥w1∥
L2q(T;L

nq
n+1−2q (Ω))

∥∇w2∥
L2q(T;L

nq
2q−1 (Ω))

≤ c3∥w1∥1,2,q∥w2∥1,2,q.

In total, this shows (3.56).
For estimate (3.57), note that (3.52) and (3.53) imply 2(n+2)

nq − 6
n ≤ 1

r ,
and Theorem 2.3.8 (with α = 2 − n/q + n/2r), leads to

∥w∥L2(T;L2r(Ω)) ≤ c4∥w∥1,2,q,

so that Hölder’s inequality yields

∣P(w1 ⋅ ∇w2)∣−1,r = ∣divP(w1 ⊗w2)∣−1,r ≤ c5∥P(w1 ⊗w2)∥Lr(Ω)

≤ c6∥w1∥L2(T;L2r(Ω))∥w2∥L2(T;L2r(Ω)) ≤ c7∥w1∥1,2,q∥w2∥1,2,q.
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For estimate (3.58) we again distinguish two cases. In the case q ≥ n,
(3.52) enables us to choose ζ1 ∈ (0,1) such that

(1
s
+ 2

n
− 1

q
)ζ1 =

1

s
− 1

2q
,

so that the Gagliardo–Nirenberg inequality (Theorem 2.3.7) implies

∥v1∥2q ≤ c8∣v1∣ζ12,q∥v1∥1−ζ1s ≤ c9λ
1−ζ1
n+1 ∥v1∥X q,r

λ

Furthermore, Theorem 2.3.8 yields the estimate

∥∇w2∥Lq(T;L2q(Ω)) ≤ c10∥w2∥1,2,q,

and Hölder’s inequality leads to (3.58) in the case q ≥ n. If s ≤ q < n, we
decide ζ2 ∈ (0,1) by

(1
s
+ 2

n
− 1

q
)ζ2 =

1

s
− 1

n
.

From the Gagliardo–Nirenberg inequality (Theorem 2.3.7) we then con-
clude

∥v1∥n ≤ c11∣v1∣ζ22,q∥v1∥1−ζ2s ≤ c12λ
1−ζ2
n+1 ∥v1∥X q,r

λ
,

and Theorem 2.3.8 implies

∥∇w2∥
Lq(T;L

nq
n−q (Ω))

≤ c13∥w2∥1,2,q.

Hence, (3.58) also follows by Hölder’s inequality in this case.
For the remaining inequality (3.59), in the case q > n

2 we choose ζ3 ∈
(0,1) with

(1
s
+ 2

n
− 1

q
)ζ3 =

1

s
+ 1

n
− 1

q
.

Note that ζ3 ≥ 1
2 since q ≥ s. Then the Gagliardo–Nirenberg inequality

(Theorem 2.3.7) and Theorem 2.3.8 lead to

∥∇v2∥q ≤ c14∣v2∣ζ32,q∥v2∥1−ζ3s ≤ c15λ
1−ζ3
n+1 ∥v2∥X q,r

λ
,

∥w1∥Lq(T;L∞(Ω)) ≤ c16∥w1∥1,2,q,

which implies (3.59) by Hölder’s inequality. In the case q < n we can use
the Sobolev inequality (that is, Theorem 2.3.7 with θ = 1), and Theorem
2.3.8 to deduce

∥∇v2∥ nq
n−q
≤ c17∣v2∣2,q ≤ c18∥v2∥X q,r

λ
,

∥w1∥Lq(T;Ln(Ω)) ≤ c19∥w1∥1,2,q,
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and (3.59) also follows by Hölder’s inequality in this case. Finally, we have
shown all asserted estimates.

By analogy to the previous subsection, to obtain a solution to the time-
periodic Navier–Stokes problem (3.47), we impose an additional condition
upon the range of r, which is justified by the following technical lemma.

Lemma 3.3.7. Let q, r ∈ (1,∞) satisfy (3.52) and (3.53) and

r >
⎧⎪⎪⎨⎪⎪⎩

n
n−1 if n = 3,4,
n+1
n if n ≥ 5.

(3.60)

Then max{θ,M + η, ζ} < n + 1 −M with M as in (3.20) and θ, η, ζ as in
Lemma 3.3.6.

Proof. Since (3.52) and (3.53) imply (3.41) and (3.42), we directly deduce
max{θ,M + η} < n + 1 −M from Lemma 3.3.3. Moreover, since ζ < 1, we
trivially have ζ < n − 1 ≤ n + 1 −M for all n ≥ 3.

Finally, we establish existence of a solution to the time-periodic problem
(3.47) by solving the fixed-point equation (3.51) in the function space
Zq,r

λ (T ×Ω).

Theorem 3.3.8. Let Ω ⊂ Rn, n ≥ 3, be an exterior domain of class C2, and
let q, r ∈ (1,∞) satisfy (3.52), (3.53) and (3.60). Then there exists λ0 > 0
such that for all 0 < λ ≤ λ0 there is ε > 0 such that for all f ∈ Lq(T ×Ω)n
with Pf ∈ D−1,r0 (Ω)n satisfying ∥f∥q + ∣Pf ∣−1,r ≤ ε there exists a solution

(v, p) ∈ Zq,r
λ (T ×Ω) × Lq(T;D1,q(Ω))

to (3.47). In particular, v ∈W1,2,q(T ×Ω)n.

Proof. The proof works similar to the proof of Theorem 3.3.4. At first, let
us show existence of a function u ∈ Zq,r

λ (T ×Ω) satisfying the fixed-point
equation (3.51), that is, u is a fixed point of the mapping

Fλ∶ Zq,r
λ (T ×Ω) → Z

q,r
λ (T ×Ω), u↦ Sλ(f +Nλ(u))

with Nλ(u) and Sλ given in (3.36) and (3.49), respectively. Now consider
the closed subset

Aρ ∶= {u ∈ Zq,r
λ (T ×Ω) ∣ ∥u∥Zq,r

λ
≤ ρ}
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of Zq,r
λ (T×Ω), where the radius ρ > 0 will be chosen below. For u ∈ Aρ set

v ∶= Pu, w ∶= P�u. In particular, we then have

PNλ(u) = −(v − λV ) ⋅ ∇(v − λV ) − P(w ⋅ ∇w) − λ∆V − λ2∂1V,
P�Nλ(u) = −(v − λV ) ⋅ ∇w −w ⋅ ∇(v − λV ) − P�(w ⋅ ∇w).

Therefore, Lemma 3.3.6 implies

∥Nλ(u)∥q ≤ ∥PNλ(u)∥q + ∥P�Nλ(u)∥q
≤ c0(λ−

θ
n+1 ∥v − λV ∥2X q,r

λ
+ λ− ζ

n+1 ∥v − λV ∥X q,r
λ
∥w∥1,2,q

+ ∥w∥21,2,q + ∥λ∆V + λ2∂1V ∥q)
≤ c1(λ−

θ
n+1 (ρ + λ)2 + λ− ζ

n+1 (ρ + λ)ρ + ρ2 + λ + λ2),
∣PNλ(u)∣−1,r ≤ c2(λ−

η
n+1 ∥u − λV ∥2X q,r

λ
+ ∥w∥21,2,q + ∣λ∆V + λ2∂1V ∣−1,r)

≤ c3(λ−
η

n+1 (ρ + λ)2 + ρ2 + λ + λ2),

where we used that ∥V ∥X q,r
λ

is bounded uniformly for 0 < λ ≤ λ0. From
(3.50) we thus conclude

∥Fλ(u)∥Zq,r
λ
≤ c4(∥f +Nλ(u)∥q + λ−

M
n+1 ∣P(f +Nλ(u))∣−1,r)

≤ c5((1 + λ−
M
n+1 )ε + (λ− θ

n+1 + λ−M+η
n+1 )(ρ + λ)2 + λ− ζ

n+1 (ρ + λ)ρ
+ (1 + λ− M

n+1 )(ρ2 + λ + λ2))
≤ c6((1 + λ−

M
n+1 )(ε + ρ2 + λ + λ2) + (λ− θ

n+1 + λ−M+η
n+1 + λ− ζ

n+1 )(ρ + λ)2).

Similarly, for u1, u2 ∈ Aρ we obtain

∥Fλ(u1) − Fλ(u2)∥Zq,r
λ

≤ c7(∥Nλ(u1) −Nλ(u2)∥q + λ−
M
n+1 ∣P(Nλ(u1) −Nλ(u2))∣−1,r)

≤ c8(1 + λ−
θ

n+1 + λ− ζ
n+1 + λ− M

n+1 + λ−M+η
n+1 )

× (∥u1∥Zq,r
λ
+ ∥u2∥Zq,r

λ
+ ∥λV ∥X q,r

λ
)∥u1 − u2∥Zq,r

λ

≤ c9(1 + λ−
θ

n+1 + λ− ζ
n+1 + λ− M

n+1 + λ−M+η
n+1 )(ρ + λ)∥u1 − u2∥Zq,r

λ
.

Lemma 3.3.7 implies max{θ, ζ,M +η} < n+1−M , so that we can consider
γ ∈ R with

1 ≤ n + 1
n + 1 −M < γ <

n + 1
max{θ, ζ,M + η} . (3.61)
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Now we choose ε = ργ = λ ≤ λ0 ≤ 1. Then the above estimates reduce to

∥Fλ(u)∥Zq,r
λ

≤ c10((1 + ρ−γ
M
n+1 )(ργ + ρ2 + ρ2γ) + (ρ− γθ

n+1 + ρ−γM+η
n+1 + ρ− γζ

n+1 )(ρ + ργ)2),
≤ c11(ργ−1 + ργ−γ

M
n+1−1 + ρ1− γθ

n+1 + ρ1−γM+η
n+1 + ρ1− γζ

n+1 )ρ

and

∥Fλ(u1) − Fλ(u2)∥Zq,r
λ

≤ c12(1 + ρ−
γθ
n+1 + ρ− γζ

n+1 + ρ− γM
n+1 + ρ−γM+η

n+1 )(ρ + ργ)∥u1 − u2∥Zq,r
λ

≤ c13(ρ + ρ1−
γθ
n+1 + ρ1− γζ

n+1 + ρ1− γM
n+1 + ρ1−γM+η

n+1 )∥u1 − u2∥Zq,r
λ
.

By (3.61), we can choose λ0 > 0 so small that

c11(ργ−1 + ργ−γ
M
n+1−1 + ρ1− γθ

n+1 + ρ1−γM+η
n+1 + ρ1− γζ

n+1 ) ≤ 1,

c13(ρ + ρ1−
γθ
n+1 + ρ1− γζ

n+1 + ρ1− γM
n+1 + ρ1−γM+η

n+1 ) ≤ 1

2

for all ρ ≤ λ1/γ0 . This ensures that Fλ∶Aρ → Aρ is a contractive self-
mapping for all λ ∈ (0, λ0]. The contraction mapping principle thus yields
the existence of a fixed point u of Fλ, that is, of u ∈ Zq,r

λ (Ω) that satisfies
(3.51). Exactly as in the proof of Theorem 3.3.4, we finally see that there
exists a pressure field p such that v ∶= u−λV and p form a solution to the
original problem (3.48) with the asserted properties.

Remark 3.3.9. Note that the conditions (3.52), (3.53) and (3.60) contain
implicit assumptions on the permitted range of q aside from n+2

3 ≤ q < n+1.
In particular, the lower bound on r from (3.60) leads to

1

q
<
⎧⎪⎪⎨⎪⎪⎩

n2−n−1
n(n+1) if n = 3,4,
n−1
n+1 if n ≥ 5,

1

q
<
⎧⎪⎪⎨⎪⎪⎩

n+3
2n if n = 3,4,
(n+2)2
2n(n+1) if n ≥ 5,

when combined with (3.52) and (3.53), respectively. However, by a simple
calculation one verifies that this is a new condition only in the case n = 3.
In summary, Theorem 3.3.8 provides existence of a solution (v, p) to (3.47)
with v ∈ W1,2,q(T × Ω)n for q ∈ (125 ,4] if n = 3, and for q ∈ [n+23 , n + 1] if
n ≥ 4.
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Subject of this chapter is the investigation of the fluid flow around a
rigid body B that moves through an infinite three-dimensional container
of liquid. The velocity field that describes the rigid motion of the body
shall be given by

V (t, x) = ξ(t) + η ∧ (x − xC(t))

with respect to its center of mass xC . As customary, t ∈ R and x ∈ R3

denote time and spatial variables, respectively. The quantities ξ ∶= d
dtxC

and η are the translational velocity and the angular velocity of B with
respect to its center of mass. We assume that the translational velocity
ξ is periodic of some prescribed period T , so that we can interpret it as
a function ξ∶T → R3 for the torus group T = R/T Z. We consider the
case where the axes of translation and rotation of the prescribed time-
periodic motion of B are constant in time and parallel, and without loss
of generality, both are directed along the x1-axis such that

ξ(t) = α(t) e1, η = ω e1
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4 Flow Past a Rotating Body

for a function α∶T→ R and a constant ω ∈ R. Under these conditions the
time-periodic motion of an incompressible Navier–Stokes fluid around B
that adheres to B at the boundary is governed by the equations
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu + ω(e1 ∧u − e1 ∧x ⋅ ∇u) − α∂1u + u ⋅ ∇u = f +∆u −∇p in T ×Ω,
divu = 0 in T ×Ω,

u = α e1 +ω e1 ∧x on T × ∂Ω,
lim
∣x∣→∞

u(t, x) = 0 for t ∈ T,

where T = R/T Z represents the time axis and Ω ∶= R3 ∖ B corresponds to
the exterior domain filled by the fluid flow. The functions u∶T×Ω→ R3 and
p∶T×Ω→ R are time-periodic velocity and pressure fields of the fluid. For
the sake of generality, in the formulation of (4.1) we additionally consider
a time-periodic external force f ∶T × Ω → R3 that affects the liquid. As
explained in the introduction, motivated by physical observations and our
mathematical approach, we only consider the configuration when the mean
translational velocity is non-zero, that is,

λ ∶= ∫
T

α(t)dt ≠ 0,

and when the mean rotational velocity ω coincides with the angular fre-
quency 2π/T of the time-periodic data, that is,

ω = 2π/T .
In order to capture the latter condition directly in the equations, we per-
form a time scale t→ ωt that yields the nonlinear system
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω(∂tu + e1 ∧u − e1 ∧x ⋅ ∇u) − α∂1u + u ⋅ ∇u = f +∆u −∇p in T ×Ω,
divu = 0 in T ×Ω,

u = α e1 +ω e1 ∧x on T × ∂Ω,
lim
∣x∣→∞

u(t, x) = 0 for t ∈ T.

(4.1)
Now all involved functions are 2π-time periodic, and T denotes the asso-
ciated torus group T = R/2πZ.

In order to show existence of a solution to (4.1), we study the linear
time-periodic problem
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ω(∂tu + e1 ∧u − e1 ∧x ⋅ ∇u) −∆u − λ∂1u +∇p = f in T ×Ω,
divu = 0 in T ×Ω,

u = 0 on T × ∂Ω,
(4.2)
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4.1 The Resolvent Problem

and establish well-posedness in a suitable functional framework. To this
end, we first investigate the corresponding resolvent problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

sv + ω(e1 ∧v − e1 ∧x ⋅ ∇v) −∆v − λ∂1v +∇p = F in Ω,

div v = 0 in Ω,

v = 0 on ∂Ω.

(4.3)

As was found out by Farwig and Neustupa [31, 32], this resolvent prob-
lem is not well posed in a classical setting of W2,q spaces for the resolvent
parameters s = iωk ∈ C, k ∈ Z, which are relevant for our approach. There-
fore, we have to work in a different framework of homogeneous Sobolev
spaces, where we establish an existence result and a suitable resolvent
estimate below. Moreover, as it turns out, for each resolvent parameter
s = iωk, k ∈ Z, we obtain a different solution space. We combine these
spaces to deduce well-posedness of the time-periodic problem (4.2) in a
framework of absolutely convergent Fourier series. The main advantage of
this functional framework is that it allows to directly obtain a priori esti-
mates for a solution to (4.2) from the resolvent estimates for (4.3). Since a
generalization of classical inequalities from the theory of Lebesgue spaces
to this functional setting is straightforward, we can then show existence
of a solution to the nonlinear problem (4.1).

In Section 4.1, we examine the resolvent problem (4.3). While in the
whole space a well-posedness result can be obtained by a suitable change
of coordinates, in an exterior domain we use cut-off techniques and a
Galerkin approach. In Section 4.2, we introduce the framework of func-
tions with absolutely convergent Fourier series, in which we then establish
well-posedness for the time-periodic problem. In Section 4.3, we reformu-
late (4.1) as a fixed-point equation and employ the contraction mapping
principle, which finally shows existence of a time-periodic solution to the
nonlinear problem (4.1).

4.1 The Resolvent Problem
In order to find a solution to the nonlinear problem (4.1), in this section
we investigate the resolvent problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ω(ikv + e1 ∧v − e1 ∧x ⋅ ∇v) −∆v − λ∂1v +∇p = F in Ω,

div v = 0 in Ω,

v = 0 on ∂Ω

(4.4)
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4 Flow Past a Rotating Body

for k ∈ Z. At first, we examine this problem together with the time-
periodic problem (4.2) in the whole space Ω = Rn, where we employ a
suitable coordinate transform, which reduces (4.2) to a time-periodic Os-
een problem without rotation terms. Subsequently, we proceed with the
study of the resolvent problem (4.4) in an exterior domain, and establish a
uniqueness result and suitable a priori estimates. After showing existence
of a solution in an L2 framework, we combine the previous results and
show well-posedness of problem (4.4).

4.1.1 Well-Posedness in the Whole Space
Before studying problems (4.2) and (4.4) in an exterior domain, we first
consider the case Ω = R3. This setting has the advantage that one can
change coordinates back to the non-rotating inertial frame, which reduces
the study of (4.2) to an investigation of the time-periodic Oseen problem
without rotation terms, which has been examined in Section 3.2. For the
rest of this section, we set

s1 ∶=
2q

2 − q , s2 ∶=
4q

4 − q , s3 ∶=
8q

8 − q
for appropriately fixed q. These numbers will occur frequently. Recall
that throughout this chapter, we consider the torus group T = R/2πZ.

The following theorem is concerned with well-posedness of the time-
periodic Oseen problem in the whole space. Observe that the constants
appearing in the a priori estimates can be chosen independently of λ and
ω as long as the ratio λ2/ω is bounded by some prescribed constant θ > 0.

Theorem 4.1.1. Let q ∈ (1,2) and λ, ω, θ > 0 with λ2 ≤ θω. For every
f ∈ Lq(T ×R3)3 there exists a solution (u,p) ∈S ′(T ×R3)3+1 to

{
ω∂tu −∆u − λ∂1u +∇p = f in T ×R3,

divu = 0 in T ×R3,
(4.5)

with ∂tu,∇2u, ∇p ∈ Lq(T ×R3), and constants C31 = C31(q) > 0 and C32 =
C32(q, θ) > 0 such that

∥∇2Pu∥q + λ∥∂1Pu∥q + λ1/2∥Pu∥s1
+λ1/4∥∇Pu∥s2 + ∥∇Pp∥q ≤ C31∥Pf∥q,

(4.6)

and

ω∥∂tP�u∥q + ∥∇2P�u∥q + λ∥∂1P�u∥q + ∥∇P�p∥q ≤ C32∥P�f∥q. (4.7)
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4.1 The Resolvent Problem

Additionally, if (w,q) ∈ S ′(T × R3)3+1 is another solution to (4.5), then
P�u = P�w, and Pu−Pw is a polynomial in each component, and p−q = p0,
where p0(t, ⋅) is a polynomial for each t ∈ T.

Proof. We decompose (4.5) into a steady-state and a purely periodic prob-
lem by splitting u = u0 + u⊥ and p = p0 + p⊥ with

u0 ∶= Pu, p0 ∶= Pp, u⊥ ∶= P�u, p⊥ ∶= P�p.

For the steady-state part (u0,p0) we obtain the steady-state Oseen system

{
−∆u0 − λ∂1u0 +∇p0 = Pf in R3,

divu0 = 0 in R3.

The existence of a time-independent solution (u0,p0) satisfying estimate
(4.6) follows from [42, Theorem VII.4.1]. The remaining purely periodic
part (u⊥,p⊥) must solve (4.5), but with purely periodic right-hand side
P�f . We define

U(t, x) ∶= u⊥(t, ω−1/2x),
P(t, x) ∶= ω−1/2 p⊥(t, ω−1/2x),
F (t, x) ∶= ω−1P�f(t, ω−1/2x),

which leads to the system

{∂tU −∆U − λ̃∂1U +∇P = F in T ×R3,

divU = 0 in T ×R3,

where λ̃ = λω−1/2. From Theorem 5.2.6 in the following chapter, we con-
clude the existence of a unique solution (U,P) that satisfies the estimate

∥∂tU∥q + ∥∇2U∥q + ∥λ̃∂1U∥q + ∥∇P∥q ≤ P (λ̃)∥F ∥q,

where P ∶R→ R is a polynomial in λ̃ and can thus be bounded uniformly in
λ̃ ∈ (0,

√
θ]. Estimate (4.7) with the asserted dependency of the constant

C32 follows after reversing the applied scaling. The remaining uniqueness
statement is a direct consequence of Lemma 5.2.5, which is established in
the next chapter.

Remark 4.1.2. In the setting of Theorem 4.1.1 we can write the estimate
for the steady-state part (u0,p0) = (Pu,Pp) and the purely periodic part
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4 Flow Past a Rotating Body

(u⊥,p⊥) = (P�u,P�p) in a more condensed way: From the embeddings
established in Theorem 2.3.9 we deduce

ω1/4∥u⊥∥Ls2(T;Ls1(R3)) + ω1/8∥∇u⊥∥Ls3(T;Ls2(R3))

≤ C33(ω∥∂tu⊥∥Lq(T×R3) + ∥∇2u⊥∥Lq(T×R3)).

Recalling Remark 2.3.10, we see that (4.6) and (4.7) can be formulated as

ω∥∂tu∥q + ∥∇2u∥q + λ∥∂1u∥q + λ1/2∥u∥Ls2(T;Ls1(R3))

+ λ1/4∥∇u∥Ls3(T;Ls2(R3)) + ∥∇p∥q ≤ C34∥f∥q
(4.8)

for a constant C34 = C34(q, θ) as long as λ2 ≤ θω.
With Theorem 4.1.1 we now solve the linear problem (4.2) for Ω = R3

and f ∈ Lq(T ×R3)3 by a suitable change of coordinates.

Theorem 4.1.3. Let q ∈ (1,2) and λ, ω, θ > 0 with λ2 ≤ θω. For every
f ∈ Lq(T ×R3)3 there exists a solution (u,p) ∈S ′(T ×R3)3+1 to

{
ω(∂tu + e1 ∧u − e1 ∧x ⋅ ∇u) −∆u − λ∂1u +∇p = f in T ×R3,

divu = 0 in T ×R3,
(4.9)

with
∂tu + e1 ∧u − e1 ∧x ⋅ ∇u, ∇2u, ∂1u, ∇p ∈ Lq(T ×R3).

Moreover, there exists a constant C35 = C35(q, θ) > 0 such that

ω∥∂tu + e1 ∧u − e1 ∧x ⋅ ∇u∥Lq(T×R3) + ∥∇2u∥Lq(T×R3)

+ λ∥∂1u∥Lq(T×R3) + λ1/2∥u∥Ls2(T;Ls1(R3)) + λ1/4∥∇u∥Ls3(T;Ls2(R3))

+ ∥∇p∥Lq(T×R3) ≤ C35∥f∥Lq(T×R3).

(4.10)

Additionally, if (w,q) ∈ S ′(T × R3)3+1 is another solution to (4.9) with
w ∈ Lr(T × R3) for some r ∈ [1,∞), then u = w, and p − q = q0 for some
spatially constant function q0∶T→ R.

Proof. Let

Q(t) ∶=
⎛
⎜
⎝

1 0 0
0 cos(t) − sin(t)
0 sin(t) cos(t)

⎞
⎟
⎠

be the matrix corresponding to the rotation with angular velocity e1. De-
fine

U(t, y) ∶= Q(t)u(t,Q(t)⊺y),
P(t, y) ∶= p(t,Q(t)⊺y),
F (t, y) ∶= Q(t)f(t,Q(t)⊺y)
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with the new spatial variable y = Q(t)x. Then u, p and f satisfy (4.9) if
and only if

{
ω∂tU −∆U − λ∂1U +∇P = F in T ×R3,

divU = 0 in T ×R3.

A short calculation shows

∂tU(t, y) = Q(t)(∂tu(t, x) + e1 ∧u(t, x) − e1 ∧x ⋅ ∇u(t, x)),

and the assertions of Theorem 4.1.3 are now a direct consequence of The-
orem 4.1.1 and estimate (4.8).

Remark 4.1.4. As for the corresponding steady-state problem (see [42,
Theorem VIII.8.1] for example), one can extend Theorem 4.1.3 to the
case of an exterior domain Ω for f ∈ Lq(T×Ω). However, it is not clear to
the author whether or not the constant in the resulting a priori estimate
can then be chosen independently of λ and ω. Observe that such an
independence is obtained in the functional setting of Theorem 4.2.5 below,
where f ∈ A(T; Lq(Ω)). Since we solve the nonlinear problem (4.1) via a
fixed-point iteration that requires λ and ω to be chosen sufficiently small
since they appear as data on the right-hand side, it is crucial to obtain an
estimate where the constant is independent of λ and ω.

From Theorem 4.1.3 we can extract a similar result for the resolvent
problem (4.4) in the whole space. For this, we identify solutions to the
resolvent problem with Fourier modes of time-periodic solutions.

Theorem 4.1.5. Let q ∈ (1,2), k ∈ Z and λ, ω, θ > 0 with λ2 ≤ θω. For
every F ∈ Lq(R3)3 there exists a solution (v, p) ∈S ′(R3)3+1 to

{
ω(ikv + e1 ∧v − e1 ∧x ⋅ ∇v) −∆v − λ∂1v +∇p = F in R3,

div v = 0 in R3,
(4.11)

and a constant C36 = C36(q, θ) > 0 with

ω∥ikv + e1 ∧v − e1 ∧x ⋅ ∇v∥q + ∥∇2v∥q + λ∥∂1v∥q
+ λ1/2∥v∥s1 + λ1/4∥∇v∥s2 + ∥∇p∥q ≤ C36∥F ∥q.

(4.12)

Additionally, if (w,q) ∈ S (R3)3+1 is another solution to (4.5) with w ∈
Lr(Ω) for some r ∈ [1,∞), then v = w, and p − q is constant.

79



4 Flow Past a Rotating Body

Proof. First consider a solution (v, p) in the described function class. Then
the fields

u(t, x) ∶= eikt v(x), p(t, x) ∶= eikt p(x), f(t, x) ∶= eiktF (x),

satisfy (4.9). Therefore, uniqueness of the pair (v,∇p) follows from the
uniqueness statement in Theorem 4.1.3. To show existence, let F ∈ Lq(R3)
and define f ∈ Lq(T ×R3) as above. Theorem 4.1.3 yields the existence of
a pair (u,p) that solves (4.9). Then the k-th Fourier coefficients v(x) ∶=
FT[u(⋅, x)](k) and p(x) ∶=FT[p(⋅, x)](k) satisfy (4.11) and belong to the
correct function classes. Moreover, estimate (4.12) is a direct consequence
of (4.10).

4.1.2 Uniqueness for the Resolvent Problem
Now we begin with the investigation of the resolvent problem (4.4) in an
exterior domain Ω. To show a uniqueness result, we multiply (4.4)1 with
the considered velocity field and employ integration by parts. To justify
the integration, we first have to obtain better regularity of the solution.
To this end, we use a cut-off procedure to decompose the solution into one
part in a bounded domain and a second part in the whole space, where
the necessary regularity results are available.

Lemma 4.1.6. Let λ ≥ 0, ω > 0, k ∈ Z, and let (v, p) be a distributional
solution to (4.4) with F = 0 and ∇2v, ∂1v, ∇p ∈ Lq(Ω) for some q ∈ (1,∞)
and v ∈ Ls(Ω) for some s ∈ (1,∞). Then v = 0 and p is constant.

Proof. Consider the case λ > 0 at first. Fix a radius R > 0 such that
∂BR ⊂ Ω, and define a cut-off function χ0 ∈ C∞0 (R3) with χ0(x) = 1 for
∣x∣ ≤ 2R and χ0(x) = 0 for ∣x∣ ≥ 4R. Set

w ∶= χ0v −B(v ⋅ ∇χ0), q ∶= χ0p (4.13)

where B denotes the Bogovskiĭ operator from Theorem 2.4.2. Then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆w +∇q = h in Ω4R,

divw = 0 in Ω4R,

w = 0 on ∂Ω4R,

with
h ∶= χ0( − ω(ikv + e1 ∧v − e1 ∧x ⋅ ∇v) − λ∂1v)

− 2∇χ0 ⋅ ∇v −∆χ0v +∇χ0p +∆B(∇χ0 ⋅ v).
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From the assumptions, we obtain v ∈W2,q(Ω4R) and p ∈W1,q(Ω4R). Clas-
sical Sobolev embeddings imply v,∇v, p ∈ L 3

2
q(Ω4R). Taking into account

the mapping properties of B from Theorem 2.4.2, this implies h ∈ Lr(Ω4R)
for all 1 < r ≤ 3

2q. From Theorem 2.4.5 we obtain w ∈ W2,r(Ω4R) and
∇q ∈ Lr(Ω4R). Since v = w and p = q on Ω2R, this yields

(v, p) ∈W2,r(Ω2R) ×W1,r(Ω2R) (4.14)

for all 1 < r ≤ 3
2q.

Next consider another cut-off function χ1 ∈ C∞(R3) with χ1(x) = 1 for
∣x∣ ≥ 2R and χ1(x) = 0 for ∣x∣ ≤ R. As above, we define

u ∶= χ1v −B(v ⋅ ∇χ1), p ∶= χ1p, (4.15)

which satisfy the system

{
ω(iku + e1 ∧u − e1 ∧x ⋅ ∇u) −∆u − λ∂1u +∇p = f in R3,

divu = 0 in R3,
(4.16)

with

f ∶= ω(e1 ∧x ⋅ ∇χ1)v − 2∇χ1 ⋅ ∇v
−∆χ1v + λ∂1χ1v +∇χ1p +∆B(v ⋅ ∇χ1) + λ∂1B(v ⋅ ∇χ1)
− ω(ikB(v ⋅ ∇χ1) + e1 ∧B(v ⋅ ∇χ1) − e1 ∧x ⋅ ∇B(v ⋅ ∇χ1)).

As above, we see f ∈ Lr(R3) for all 1 < r ≤ 3
2q. Since we also have

u ∈ Ls(R3), Theorem 4.1.5 implies

iku + e1 ∧u − e1 ∧x ⋅ ∇u, ∇2u, ∂1u, ∇p ∈ Lr(R3),
∇u ∈ L4r/(4−r)(R3), u ∈ L2r/(2−r)(R3)

if additionally r < 2. Due to v = u and p = p on B2R, we have

ikv + e1 ∧v − e1 ∧x ⋅ ∇v, ∇2v, ∂1v, ∇p ∈ Lr(B2R),
∇v ∈ L4r/(4−r)(B2R), v ∈ L2r/(2−r)(B2R)

(4.17)

for 1 < r ≤ 3
2q with r < 2.

We combine (4.14) and (4.17) to deduce

ikv + e1 ∧v − e1 ∧x ⋅ ∇v, ∇2v, ∂1v, ∇p ∈ Lr(Ω),
∇v ∈ L4r/(4−r)(Ω), v ∈ L2r/(2−r)(Ω)
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for 1 < r ≤ 3
2q with r < 2. After repeating the above argument a sufficient

number of times, we obtain
∀r ∈ (1,2) ∶ ikv + e1 ∧v − e1 ∧x ⋅ ∇v, ∇2v, ∂1v, ∇p ∈ Lr(Ω) (4.18)

and, by a combination with the Sobolev inequality,

∀r ∈ (3
2
,6) ∶ ∇v ∈ Lr(Ω), ∀r ∈ (2,∞) ∶ v ∈ Lr(Ω). (4.19)

In particular, using the divergence theorem and v = 0 on ∂Ω we obtain

Re∫
ΩR

(e1 ∧x ⋅ ∇v) ⋅ v∗ dx = ∫
ΩR

1

2
div [(e1 ∧x)∣v∣2]dx

= ∫
∂ΩR

1

2
(e1 ∧x) ⋅ n∣v∣2 dS = ∫

∂BR

1

2
(e1 ∧x) ⋅ xR−1∣v∣2 dS = 0

for any R > 0 with ∂BR ⊂ Ω. Passing to the limit R →∞, we obtain

Re∫
Ω

(e1 ∧x ⋅ ∇v) ⋅ v∗ dx = 0. (4.20)

Next consider a family of cut-off functions χρ ∈ C∞0 (R3) with χρ(x) = 1
for ∣x∣ ≤ ρ and χ0(x) = 0 for ∣x∣ ≥ 2ρ such that 0 ≤ χρ ≤ 1 and ∣∇χρ∣ ≤ c0/ρ.
Let ρ > δ(Ωc). From (4.18) and (4.19) we deduce ∂1v ⋅ v∗ ∈ L1(Ω), and
integration by parts and Hölder’s inequality imply

∣Re∫
Ω

χρ∂1v ⋅ v∗ dx∣ =
1

2
∣∫
Ω

χρ∂1∣v∣2 dx∣ =
1

2
∣∫
Ω

∂1χρ∣v∣2 dx∣

≤ c1
ρ
( ∫
B2ρ∖Bρ

1dx)
1/5

∥v∥25/2 ≤ c2ρ−2/5∥v∥25/2.

Due to (4.19), the right-hand side is finite, and by passing to the limit
ρ→∞, we obtain

Re∫
Ω

∂1v ⋅ v∗ dx = 0. (4.21)

By (4.18) and (4.19), we can further multiply (4.4)1 by v∗ and integrate
over Ω. Utilizing the identities (4.20), (4.21) and Re(e1 ∧v ⋅ v∗) = 0 and
integrating by parts, we conclude

0 = Re∫
Ω

(ω(ikv + e1 ∧v − e1 ∧x ⋅ ∇v) −∆v + λ∂1v +∇p) ⋅ v∗ dx

= Re∫
Ω

iωk∣v∣2 + ∣∇v∣2 dx = ∫
Ω

∣∇v∣2 dx.
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4.1 The Resolvent Problem

This implies ∇v = 0, and the imposed boundary conditions yield v = 0.
Finally, (4.4)1 leads to ∇p = 0. This completes the proof in the case λ > 0.
The proof for λ = 0 can be shown in a similar way.

4.1.3 Resolvent Estimates
Next we establish an a priori estimate for the solution to the resolvent
problem (4.4). The following lemma is the first step into this direction.
Observe that the right-hand side of estimate (4.23) below still contains
lower order terms. For its derivation, we use a cut-off argument as in the
proof of Lemma 4.1.6. Note that, as explained above, we have to keep
record on the influence of the parameters λ and ω.

Lemma 4.1.7. Let q ∈ (1,2), k ∈ Z and λ, ω, θ > 0 with λ2 ≤ θω. More-
over, let F ∈ Lq(Ω)3 and R > δ(Ωc). Let (v, p) ∈ L1

loc(Ω)3+1 with

ikv + e1 ∧v − e1 ∧x ⋅ ∇v, ∇2v, ∂1v, ∇p ∈ Lq(Ω),
v ∈ Ls1(Ω), ∇v ∈ Ls2(Ω) (4.22)

be a solution to (4.4). Then there is a constant C37 = C37(Ω, q, θ,R) > 0
such that

ω∥ikv + e1 ∧v − e1 ∧x ⋅ ∇v∥q + ∥∇2v∥q
+ λ∥∂1v∥q + λ1/2∥v∥s1 + λ1/4∥∇v∥s2 + ∥∇p∥q

≤ C37(∥F ∥q + (1 + λ + ω)∥v∥1,q;Ω4R
+ ω∣k∣ ∥v∥−1,q;Ω4R

+ ∥p∥q;Ω4R
).

(4.23)

Proof. Let χ0, χ1 be the cut-off functions from the proof of Lemma 4.1.6.
Define w ∶= χ0v and q ∶= χ0p. Then w ∈W2,q(Ω4R), q ∈W1,q(Ω4R) and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ikωw −∆w +∇q = h in Ω4R,

divw = g in Ω4R,

w = 0 on ∂Ω4R

with

h ∶= (F − ω(e1 ∧v − e1 ∧x ⋅ ∇v) − λ∂1v)χ0 − 2∇χ0 ⋅ ∇v −∆χ0v +∇χ0p,

g ∶= v ⋅ ∇χ.

Therefore, (w,q) satisfies a Stokes resolvent problem in the bounded do-
main Ω4R, and Theorem 2.4.5 implies

∥w∥2,q;Ω4R
+ ∥∇q∥q;Ω4R

≤ c0(∥h∥q;Ω4R
+ ∥∇g∥q;Ω4R

+ ω∣kg∣∗−1,q;Ω4R
),
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where ∣ ⋅ ∣∗−1,q;Ω4R
is defined in (2.11). By Hölder’s inequality and Proposi-

tion 2.4.3, we obtain

∥h∥q;Ω4R
+ ∥∇g∥q;Ω4R

≤ c1(∥F ∥q + (1 + λ + ω)∥v∥1,q;Ω4R
+ ∥p∥q;Ω4R

),
∣g∣∗−1,q;Ω4R

≤ c2∥v∥−1,q;Ω4R
.

Since v = w and p = q on Ω2R, we thus conclude

∥v∥2,q;Ω2R
+ ∥∇p∥q;Ω2R

≤ c3(∥F ∥q + (1 + λ + ω)∥v∥1,q;Ω4R
+ ∥p∥q;Ω4R

+ ω∣k∣ ∥v∥−1,q;Ω4R
).

(4.24)

Next define (u,p) as in (4.15), which satisfies the system

{
ω(iku + e1 ∧u − e1 ∧x ⋅ ∇u) −∆u − λ∂1u +∇p = f in R3,

divu = 0 in R3,

with

f ∶= χ1F − ω(e1 ∧x ⋅ ∇χ1)v − 2∇χ1 ⋅ ∇u −∆χ1v + λ∂1χ1v

+∇χ1p −∆B(v ⋅ ∇χ1) + λ∂1B(v ⋅ ∇χ1)
+ ω(ikB(v ⋅ ∇χ1) + e1 ∧B(v ⋅ ∇χ1) − e1 ∧x ⋅ ∇B(v ⋅ ∇χ1)),

where B is the Bogovskiĭ operator; see Theorem 2.4.2. Theorem 4.1.5 and
the mapping properties of the Bogovskiĭ operator from Theorem 2.4.2 and
Corollary 2.4.4 lead to the estimate

ω∥iku + e1 ∧u − e1 ∧x ⋅ ∇u∥q + ∥∇2u∥q
+ λ∥∂1u∥q + λ1/4∥∇u∥s2 + λ1/2∥u∥s1 + ∥∇p∥q

≤ c4(∥F ∥q + (1 + λ + ω)∥v∥1,q;Ω2R
+ ∥p∥q;Ω2R

+ ω∣k∣∥v∥−1,q;Ω2R
).

Due to v = u and p = p on Ω2R, this implies

ω∥ikv + e1 ∧v − e1 ∧x ⋅ ∇v∥q;Ω2R + ∥∇2v∥q;Ω2R

+ λ∥∂1v∥q;Ω2R + λ1/4∥∇v∥s2;Ω2R + λ1/2∥v∥s1;Ω2R + ∥∇p∥q;Ω2R

≤ c5(∥F ∥q + (1 + λ + ω)∥v∥1,q;Ω2R
+ ∥p∥q;Ω2R

+ ω∣k∣∥v∥−1,q;Ω2R
).

Combining this estimate with (4.24), we conclude (4.23).

In the next step we improve estimate (4.23) by showing that the lower-
order terms on the right-hand side can be omitted. This leads to the
desired a priori estimate, where only the data F appear on the right-
hand side. For the proof we use a classical contradiction argument. Note
that, because we need a constant that is independent of the parameters
k, λ and ω, this argument is more involved than in the classical case.
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Lemma 4.1.8. Let q ∈ (1,2), k ∈ Z and λ, ω > 0, and let F ∈ Lq(Ω)3.
Let (v, p) ∈ L1

loc(Ω)3+1 be a solution to (4.4) in the class (4.22). Then the
estimate

ω∥ikv + e1 ∧v − e1 ∧x ⋅ ∇v∥q + ∥∇2v∥q + λ∥∂1v∥q
+ λ1/2∥v∥s1 + λ1/4∥∇v∥s2 + ∥∇p∥q ≤ C38∥F ∥q

(4.25)

holds for a constant C38 = C38(Ω, q, λ,ω) > 0. If q ∈ (1, 32) and λ2 ≤ θω ≤ B
then this constant can be chosen independently of λ and ω such that C38 =
C38(Ω, q, θ,B).

Proof. We prove the lemma by a contradiction argument. At first, con-
sider the case q ∈ (1, 32) and assume that (4.25) is not valid for a con-
stant C38 = C38(Ω, q, θ,B). Then there exist sequences of numbers (λj) ⊂
(0,
√
B], (ωj) ⊂ (0,B/θ] with λ2j ≤ θωj, and (kj) ⊂ Z, and of functions

(vj), (pj), (Fj) that satisfy

lim
j→∞
∥Fj∥q → 0, (4.26)

ωj∥ikjvj + e1 ∧vj − e1 ∧x ⋅ ∇vj∥q + ∥∇2vj∥q
+λj∥∂1vj∥q + λ1/2j ∥vj∥s1 + λ

1/4
j ∥∇vj∥s2 + ∥∇pj∥q = 1,

(4.27)

and
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ωj(ikjvj + e1 ∧vj − e1 ∧x ⋅ ∇vj) −∆vj − λj∂1vj +∇pj = Fj in Ω,

div vj = 0 in Ω,

vj = 0 on ∂Ω,

(4.28)

for all j ∈ N. Furthermore, without loss of generality, we may assume
∫ΩR

pj dx = 0 for a radius R > δ(Ωc). Then, (λj), (ωj) and (kj) contain
convergent subsequences with limits λ ∈ [0,

√
B], ω ∈ [0,B/θ] and k ∈

Z ∪ {±∞}, respectively, such that λ2 ≤ θω. For simplicity, we identify
selected subsequences with the actual sequences for the rest of the proof.

For the moment, fix a radius ρ > R. By equation (4.27), the sequence
(vj) is bounded in D2,q(Ωρ). Due to (4.28)3 and the generalized Poincaré
inequality from Proposition 2.3.3, the sequence (vj) is also bounded in
W2,q(Ωρ). Moreover, this fact and the estimate

∥iωjkjvj∥q;Ωρ ≤ ωj∥ikjvj + e1 ∧vj − e1 ∧x ⋅ ∇vj∥q;Ωρ + c0ωj(1 + ρ)∥vj∥1,q;Ωρ

together with (4.27) show that the sequence (iωjkjvj) is bounded in the
space Lq(Ωρ). Furthermore, by (4.27) and Poincaré’s inequality, the se-
quence (pj) is bounded in W1,q(Ωρ). In summary, we conclude that
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Uj ∶= (iωjkjvj, vj, pj) is bounded in Lq(Ωρ) × W2,q(Ωρ) × W1,q(Ωρ) for
any ρ > R. Hence, by a Cantor diagonalization argument, there ex-
ists U ∶= (w, v, p) such that a subsequence of (Uj) converges weakly in
Lq(Ωρ) ×W2,q(Ωρ) ×W1,q(Ωρ) to U for each ρ > R. Consequently, passing
to the limit j →∞ in (4.28) and using (4.26), we obtain

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

w + ω(e1 ∧v − e1 ∧x ⋅ ∇v) −∆v − λ∂1v +∇p = 0 in Ω,

div v = 0 in Ω,

v = 0 on ∂Ω.

(4.29)

Moreover, by the compact embeddings

W2,q(Ω4R) ↪W1,q(Ω4R) ↪ Lq(Ω4R) ↪W−1,q(Ω4R),

we deduce that U is the strong limit of (Uj) in the topology of the space
W−1,q(Ω4R) ×W1,q(Ω4R) × Lq(Ω4R). By Lemma 4.1.7, we conclude

ωj∥ikjvj + e1 ∧vj − e1 ∧x ⋅ ∇vj∥q + ∥∇2vj∥q
+ λj∥∂1vj∥q + λ1/2j ∥vj∥s1 + λ

1/4
j ∥∇vj∥s2 + ∥∇pj∥q

≤ C37(∥Fj∥q + (1 + λj + ωj)∥vj∥1,q;Ω4R
+ ω∣kj ∣ ∥vj∥−1,q;Ω4R

+ ∥pj∥q;Ω4R
).

Passing to the limit j →∞ in this estimate, we conclude in virtue of (4.26)
and (4.27) that

1 ≤ C37((1 + λ + ω)∥v∥1,q;Ω4R
+ ∥w∥−1,q;Ω4R

+ ∥p∥q;Ω4R
). (4.30)

Moreover, this implies

∥w + ω(e1 ∧v − e1 ∧x ⋅ ∇v)∥q + ∥∇2v∥q + λ∥∂1v∥q
+ λ1/2∥v∥s1 + λ1/4∥∇v∥s2 + ∥∇p∥q < ∞.

(4.31)

Now we distinguish between several cases:

i. If ωjkj → s ∈ R and ω = 0, then λ = 0 and w = isv, so that (4.29)
reduces to a Stokes resolvent problem. If s ≠ 0, we also have v ∈
Lq(Ω) and we conclude v = ∇p = 0 from a well-known uniqueness
result; see for example [33]. If s = 0, we utilize that q < 3

2 and
vj ∈ Ls1(Ω), ∇vj ∈ Ls2(Ω), so that Sobolev’s inequality implies

∥vj∥3q/(3−2q) ≤ c1∥∇vj∥3q/(3−q) ≤ c2∥∇2vj∥q,

and thus v ∈ L3q/(3−2q)(Ω). Now v = ∇p = 0 follows from Lemma
3.1.3.
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ii. If ωjkj → s ∈ R and ω ≠ 0 but λ = 0, then kj → k ∈ Z and w = iωkv,
so that (4.29) reduces to the resolvent problem (4.4) with λ = 0.
As above, we deduce v ∈ L3q/(3−2q)(Ω), and from Lemma 4.1.6 we
conclude v = ∇p = 0.

iii. If ωjkj → s ∈ R and ω ≠ 0 and λ ≠ 0, then kj → k ∈ Z and w = iωkv,
so that (v, p) satisfies the resolvent problem (4.4). Since λ ≠ 0, from
(4.31) we obtain v ∈ Ls1(Ω). Lemma 4.1.6 thus implies v = ∇p = 0.

iv. If ωj ∣kj ∣ → ∞, we recall (4.27) and estimate

ωj ∣kj ∣∥vj∥q;Ωρ ≤ ωj∥ikjvj + e1 ∧vj − e1 ∧x ⋅ ∇vj∥q;Ωρ + c3∥vj∥1,q;Ωρ ≤ c4,

for any ρ > R, where the constants c3 and c4 depend on ρ but are
independent of vj. Passing to the limit j →∞, we thus obtain v = 0
on Ωρ for each ρ > R. Therefore, v = 0 on Ω, and (4.29)1 reduces
to w + ∇p = 0. Clearly, we also have divw = 0 and w∣∂Ω = 0, so
that w +∇p = 0 corresponds to the Helmholtz decomposition of 0 in
Lq(Ω). Since this decomposition is unique, we conclude w = ∇p = 0.

Consequently, all four cases lead to w = v = ∇p = 0, which contradicts
(4.30). This completes the proof in the case 1 < q < 3

2 .
In the more general case q ∈ (1,2), where we do not assert the constant

C38 to be independent of λ and ω, these parameters remain fixed in the
contradiction argument. Consequently, only the last two cases above have
to be considered. Since the conclusion in both of these cases is valid for
all q ∈ (1,2), we conclude the lemma.

4.1.4 Existence of a Solution
After having established a uniqueness statement and suitable estimates,
it remains to show existence of a solution to the resolvent problem (4.4).
To this end, we employ a Galerkin approach combined with an “invading
domains” technique to obtain a solution in an L2 framework.

More precisely, we proceed as follows. We intersect the exterior domain
Ω with balls of radius BR. On the resulting bounded domain ΩR, we can
select eigenfunctions to the Stokes operator, which we take as a basis for a
Galerkin approximation and lead to a strong solution in ΩR. Subsequently,
we pass to the limit R →∞, which finally yields a solution in the exterior
domain Ω. Observe that in order for this approach to work, we need
to derive suitable a priori estimates that are valid independently of R.
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However, in contrast to Lemma 4.1.8, here it is not necessary to examine
the dependencies on k, λ and ω.

During our approach we make use of the following identity.

Lemma 4.1.9. Let Ω ⊂ Rn be an exterior domain of class C2, and let
R > δ(Ωc). Let u ∈ L2

σ(ΩR)∩W1,2
0 (ΩR)∩W2,2(ΩR) with complex conjugate

u∗. Then e1 ∧u − e1 ∧x ⋅ ∇u ∈ L2
σ(ΩR) and

∫
ΩR

(e1 ∧u − e1 ∧x ⋅ ∇u) ⋅ PH∆u∗ dx

= ∫
∂Ω

1

2
∣∇u∣2(e1 ∧x) ⋅ n − n ⋅ ∇u∗ ⋅ (e1 ∧x ⋅ ∇u)dS − ∫

ΩR

∇(e1 ∧u) ∶ ∇u∗ dx.

Proof. This was proved in [52, Lemma 3] for real-valued functions u and
simply carries over to complex-valued functions by a decomposition into
real and imaginary parts.

Next we introduce a basis of functions suitable for our Galerkin method.

Lemma 4.1.10. Let D be a bounded domain of class C2. There is a
sequence of (real-valued) eigenfunctions (ψj)j∈N of the Stokes operator A,
defined in (2.16), and a sequence (µj)j∈N ⊂ (0,∞) of eigenvalues such that
(ψj)j∈N constitutes a basis of both dom(A) and L2

σ(D) and

µj ∫
D

ψj ⋅ ψ` dx = δj`. (4.32)

Proof. Since A is a positive self-adjoint and invertible operator, the exis-
tence of positive eigenvalues and corresponding eigenfunctions that con-
stitute a basis of dom(A) and an orthonormal basis of L2(D) follows from
classical spectral theory; see [100, Theorem VI.5.1] for example. Finally,
by a renormalization we conclude (4.32).

Remark 4.1.11. Observe that (4.32) means that (ψj)j∈N is an orthonormal
set in W1,2

0 (D)n equipped with the homogeneous norm ∣ ⋅ ∣1,2 since

µj ∫
D

ψj ⋅ ψ` dx = −∫
D

PH∆ψj ⋅ ψ` dx = ∫
D

∇ψj ∶ ∇ψ` dx.

Making use of this basis, we next show existence of a solution to system
(4.4) by means of a Galerkin method. Note that a basis of eigenfunctions
as in Lemma 4.1.10 does not exist in an exterior domain. Therefore, we
consider (4.4) in a suitable bounded domain at first.
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Lemma 4.1.12. Let Ω ⊂ R3 be an exterior domain of class C3. Let
λ, ω > 0, k ∈ Z, and let F ∈ L2(Ω)3 ∩ L6/5(Ω)3. For each R, R0 > 0 with
R > R0 > δ(Ωc), there exists a solution (vR, pR) = (v, p) to
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ω(ikv + e1 ∧v − e1 ∧x ⋅ ∇v) −∆v − λ∂1v +∇p = F in ΩR,

div v = 0 in ΩR,

v = 0 on ∂ΩR

(4.33)

satisfying

∥v∥6;ΩR
+ ∥∇v∥2;ΩR

+ ∥∇2v∥2;ΩR
+ ω∥ikv + e1 ∧v − e1 ∧x ⋅ ∇v∥2;ΩR

≤ C39(∥F ∥6/5;ΩR
+ ∥F ∥2;ΩR

)
(4.34)

for a constant C39 = C39(n,Ω, k, λ,ω,R0) > 0 that is independent of R.

Proof. Let (ψj)j∈N and (µj)j∈N ⊂ (0,∞) be as in Lemma 4.1.10 for D = ΩR,
and consider the set Xn ∶= spanC{ψj ∣ j = 1, . . . , n}. At first, we construct
a function u = un ∈Xn satisfying

∫
ΩR

[ω(iku + e1 ∧u − e1 ∧x ⋅ ∇u) −∆u − λ∂1u] ⋅ ψj dx = ∫
ΩR

F ⋅ ψj dx (4.35)

for all j ∈ {1, . . . , n}. Note that these are linear equations in the finite-
dimensional vector space Xn. Since u ∈Xn, there exist ξ ∶= (ξ1, . . . , ξn) ∈ C
such that

u =
n

∑
`=1
ξ`ψ`.

Observe that the orthogonality relation (4.32) and ψj ∈ L2
σ(ΩR) yield

∫
ΩR

−∆ψ` ⋅ ψj dx = ∫
ΩR

−PH∆ψ` ⋅ ψj dx = ∫
ΩR

µ`ψ` ⋅ ψj dx = δ`j.

Therefore, with the above representation of u, the system of equations
(4.35) reduces to the algebraic equation

(I + iM)ξ = b (4.36)

with M = (M`j) ∈ Cn×n and b = (bj) ∈ Cn defined by

M`j ∶= ∫
ΩR

(ωkψ` − iω(e1 ∧ψ` − e1 ∧x ⋅ ∇ψ`) + iλ∂1ψ`) ⋅ ψj dx,

bj ∶= ∫
ΩR

F ⋅ ψj dx.
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Employing the vector identities

e1 ∧ψ` ⋅ ψj = − e1 ∧ψj ⋅ ψ`, e1 ∧x ⋅ ∇ψ` = div [ψ` ⊗ (e1 ∧x)]

and integration by parts, we see that M is a self-adjoint matrix and thus
possesses only real eigenvalues. Since equation (4.36) is equivalent to
(−iI +M)ξ = −ib, we thus obtain a unique solution ξ ∈ Rn, which leads to
existence of a unique solution u = un ∈Xn to (4.35).

Next we derive suitable estimates for u = un. Multiplication of both
sides of (4.35) by the complex conjugate coefficient ξ∗j and summation
over j = 1, . . . , n yields

∥∇u∥22 + ∫
ΩR

(ω(iku + e1 ∧u − e1 ∧x ⋅ ∇u) − λ∂1u) ⋅ u∗ dx = ∫
ΩR

F ⋅ u∗ dx.

Employing the above vector identities again, we see that the integral term
on the left-hand side is purely imaginary. Taking the real part of this
equation thus leads to the estimate

∥∇u∥22 ≤ ∥F ∥6/5∥u∥6.

Recalling the Sobolev inequality ∥u∥6 ≤ c0∥∇u∥2, we obtain the estimate
∥∇u∥2 ≤ c0∥F ∥6/5 and conclude

∥u∥6 + ∥∇u∥2 ≤ c1∥F ∥6/5, (4.37)

where c1 is independent of R. When we multiply both sides of (4.35) by
µjξ∗j and sum over j = 1, . . . , n, we obtain

∥PH∆u∥22 = ∫
ΩR

[F − ω(iku + e1 ∧u − e1 ∧x ⋅ ∇u) + λ∂1u] ⋅ PH∆u∗ dx.

Taking the real parts of both sides, observing that

Re∫
ΩR

iku ⋅ PH∆u∗ dx = −Re (ik∥∇u∥22) = 0,

and using Hölder’s inequality, we conclude the estimate

∥PH∆u∥22 ≤(∥F ∥2 + λ∥∂1u∥2)∥PH∆u∥2
+Re∫

ΩR

ω(e1 ∧u − e1 ∧x ⋅ ∇u) ⋅ PH∆u∗ dx. (4.38)
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In view of the identity from Lemma 4.1.9, we can estimate the remaining
integral on the right-hand side to obtain

Re∫
ΩR

ω(e1 ∧u − e1 ∧x ⋅ ∇u) ⋅ PH∆u∗ dx ≤ c2(∥∇u∥22;∂Ω + ∥∇u∥22;ΩR
)

with c2 independent of R. Employing the trace inequality from Theorem
2.3.2 on the domain ΩR0 , we further estimate

Re∫
ΩR

ω(e1 ∧u − e1 ∧x ⋅ ∇u) ⋅ PH∆u∗ dx ≤ c3∥∇u∥22;ΩR
+ ε∥∇2u∥22;ΩR

for c3 dependent on ε > 0 but independent of R. We estimate the second
term on the right-hand side with the help of Lemma 2.4.7 and deduce

Re∫
ΩR

ω(e1 ∧u − e1 ∧x ⋅ ∇u) ⋅ PH∆u∗ dx

≤ (c3 + c4)∥∇u∥22;ΩR
+ εc4∥PH∆u∥22;ΩR

with a constant c4 > 0 independent of R and ε. Combining this estimate
with (4.38) and choosing ε sufficiently small, we obtain

∥PH∆u∥22 ≤ c5(∥F ∥2 + ∥∇u∥2)∥PH∆u∥2 + c6∥∇u∥22.

Employing Young’s inequality and estimate (4.37), we arrive at

∥PH∆u∥2;ΩR
≤ c7(∥F ∥2 + ∥F ∥6/5).

Using Lemma 2.4.7 and estimate (4.37) once again and restoring the orig-
inal notation, we end up with

∥∇2un∥2;ΩR
≤ c8(∥F ∥2 + ∥F ∥6/5) (4.39)

with c8 independent of R.
In particular, we see from (4.37), (4.39) and Poincaré’s inequality that
(un) is uniformly bounded in W2,2(ΩR) and thus contains a subsequence
that converges weakly to some function v ∈ L2

σ(ΩR)∩W1,2
0 (ΩR)∩W2,2(ΩR),

which obeys the estimate

∥v∥6;ΩR
+ ∥∇v∥1,2;ΩR

≤ c9(∥F ∥6/5 + ∥F ∥2) (4.40)

with c9 independent of R. Moreover, since (ψj) is a basis of L2
σ(ΩR) and

v satisfies (4.35) for all j ∈ N, we obtain the identity

PH(ω(ikv + e1 ∧v − e1 ∧x ⋅ ∇v) −∆v − λ∂1v) = PHF.
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4 Flow Past a Rotating Body

By the Helmholtz–Weyl decomposition (Theorem 2.4.1), there exists p ∈
W1,2(ΩR) such that

ω(ikv + e1 ∧v − e1 ∧x ⋅ ∇v) −∆v − λ∂1v +∇p = F in ΩR.

In particular, since v ∈ L2
σ(ΩR) ∩W1,2

0 (ΩR), the functions v and p satisfy
(4.33). Since e1 ∧v−e1 ∧x⋅∇v ∈ L2

σ(ΩR) by Lemma 4.1.9, from this equation
and (4.40) we further deduce the estimate

ω∥ikv + e1 ∧v − e1 ∧x ⋅ ∇v∥2 = ω∥PH(ikv + e1 ∧v − e1 ∧x ⋅ ∇v)∥2
≤ ∥PHF ∥2 + ∥PH∆v∥2 + λ∥PH∂1v∥2 ≤ c10(∥F ∥6/5 + ∥F ∥2)

by continuity of the Helmholtz projector. Combining this estimate with
(4.40), we conclude (4.34).

In order to obtain a solution to the resolvent problem (4.4) in an exterior
domain, the idea is to pass to the limit R →∞ in Lemma 4.1.12. To make
this approach rigorous, we first have to employ a suitable cut-off argument.

Lemma 4.1.13. Let Ω, λ, ω, k, F be as in Lemma 4.1.12. Then there
exists a solution (v, p) to (4.4) with

ikv + e1 ∧v − e1 ∧x ⋅ ∇v, ∇v, ∇2v, ∇p ∈ L2(Ω), v ∈ L6(Ω).

Proof. Consider a standard cut-off function χ ∈ C∞0 (R; [0,1]) with χ(s) =
1 for ∣s∣ ≤ 1/2 and χ(s) = 0 for ∣s∣ ≥ 3/4. For m ∈ N with 2m > δ(Ωc) define
χm ∈ C∞0 (Rn) by χm(x) ∶= χ(∣x∣/m). Then we have

χm(x) = 1 for ∣x∣ ≤ m
2
, χm(x) = 0 for ∣x∣ ≥ 3m

4
,

∣∇χm∣ ≤
c0
m
, ∣∇2χm∣ ≤

c1
m2

,

where the last estimate follows from supp∇χm ⊂ Am ∶= Bm ∖Bm/2. Define
wm ∶= χmvm, where vm = vR is the velocity field from Lemma 4.1.12 with
R = m. Then wm is an element of W2,2(Ω), and ∥wm∥6 ≤ ∥vm∥6. Hölder’s
inequality further yields

∥∇wm∥2 ≤ c2(∥∇vm∥2∥χ∥∞ + ∥vm∥6∥∇χm∥3;Am)
≤ c3(∥∇vm∥2 + ∥vm∥6),

∥∇2wm∥2 ≤ c4(∥∇2vm∥2∥χm∥∞ + ∥∇vm∥2∥∇χm∥∞ + ∥vm∥6∥∇2χm∥3;Am)
≤ c5(∥∇2vm∥2 + ∥∇vm∥2 + ∥vm∥6).
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4.1 The Resolvent Problem

Moreover, by ∇χm(x) = χ′(∣x∣/m) x
m∣x∣ , we have

e1 ∧x ⋅ ∇wm = e1 ∧x ⋅ ∇vmχm + e1 ∧x ⋅ ∇χmv
m = e1 ∧x ⋅ ∇vmχm,

from which we conclude

∥ikwm + e1 ∧wm − e1 ∧x ⋅ ∇wm∥2 ≤ ∥ikvm + e1 ∧vm − e1 ∧x ⋅ ∇vm∥2.

Combining the above estimates with (4.34), we deduce

∥wm∥6 + ∥∇wm∥2 + ∥∇2wm∥2 + ω∥ikwm + e1 ∧wm − e1 ∧x ⋅ ∇wm∥2
≤ c6(∥F ∥6/5 + ∥F ∥2)

with c6 independent of m. This implies the existence of a subsequence of
(wm), still denoted by (wm), that converges in the sense of distributions
to some function v ∈W2,2

loc(Ω) that satisfies

∥v∥6 + ∥∇v∥2 + ∥∇2v∥2 + ω∥ikv + e1 ∧v − e1 ∧x ⋅ ∇v∥2 ≤ C39(∥F ∥6/5 + ∥F ∥2).

Moreover, v∣∂Ω = 0. Let ϕ ∈ C∞0 (Ω) and choose m0 ∈ N such that suppϕ is
contained in Ωm0/2. For m ≥m0 we have wm = vm on Ωm0/2 and thus

∫
Ω

wm ⋅ ∇ϕdx = ∫
Ω

vm ⋅ ∇ϕdx = 0

by (4.33)2. Passing to the limit m → ∞, we conclude div v = 0. Now let
ψ ∈ C∞0,σ(Ω) and choose m0 such that suppψ ⊂ Ωm0/2. With the same
argument as above, for m ≥m0 we obtain from (4.33)1 that

∫
Ω

(ω(ikwm + e1 ∧wm − e1 ∧x ⋅ ∇wm) −∆wm − λ∂1wm − F ) ⋅ ψ dx

= ∫
Ω

(ω(ikvm + e1 ∧vm − e1 ∧x ⋅ ∇vm) −∆vm − λ∂1vm − F ) ⋅ ψ dx = 0.

Therefore, by passing to the limit m→∞, we see

∫
Ω

(ω(ikv + e1 ∧v − e1 ∧x ⋅ ∇v) −∆v − λ∂1v − F ) ⋅ ψ dx = 0

for all ψ ∈ C∞0,σ(Ω). Consequently, by the Helmholtz–Weyl decomposition
in L2(Ω), there exists a function p ∈ D1,2(Ω) such that (v, p) is a solution
to (4.4). This completes the proof.
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4.1.5 Well-Posedness
Combining Lemma 4.1.6, Lemma 4.1.8 and Lemma 4.1.13, we conclude
the following well-posedness result for the resolvent problem (4.4). For
the proof we first consider smooth data F , for which we obtain a solution
in an L2 framework by Lemma 4.1.13. Subsequently, we show by another
cut-off argument that this solution belongs to the function space defined
by the left-hand side of the resolvent estimate (4.25). Finally, a classical
density argument yields a solution to (4.4) for general data F ∈ Lq(Ω). In
total, we obtain the following result.
Theorem 4.1.14. Let Ω ⊂ R3 be an exterior domain of class C3. Let
q ∈ (1,2), k ∈ Z and λ, ω, θ, B > 0 with λ2 ≤ θω ≤ B. For every F ∈ Lq(Ω)3
there exists a solution (v, p) ∈W2,q

loc(Ω)3×W
1,q
loc(Ω) to the resolvent problem

(4.4) subject to the estimate

ω∥ikv + e1 ∧v − e1 ∧x ⋅ ∇v∥q + ∥∇2v∥q + λ∥∂1v∥q
+ λ1/2∥v∥s1 + λ1/4∥∇v∥s2 + ∥∇p∥q ≤ C40∥F ∥q

(4.41)

for a constant C40 = C40(Ω, q, λ, ω) > 0 and s1 = 2q/(2− q), s2 = 4q/(4− q).
Additionally, if (w,q) is another solution to (4.4) in the function class

defined by the norms on the left-hand side of (4.41), then v = w, and p− q
is a constant.

Moreover, if q ∈ (1, 32), then the constant C40 can be chosen independently
of λ and ω such that C40 = C40(Ω, q, θ,B).
Proof. The uniqueness statement is an immediate consequence of Lemma
4.1.6, and estimate (4.41) has been proved in Lemma 4.1.8. It thus remains
to show existence of a solution for F ∈ Lq(Ω).

At first, let F ∈ C∞0 (Ω), and let (v, p) be the corresponding solution to
(4.4) that exists by Lemma 4.1.13. We first show that then (v, p) belongs
to the correct function class. By Hölder’s inequality, we directly find that

v ∈W2,q(Ωρ), p ∈W1,q(Ωρ) (4.42)

for any ρ > R and all q ∈ [1,2]. Repeating the cut-off argument from (4.15),
we obtain a solution (u,p) to (4.16) for some function f ∈ L2(R3) with
compact support. In particular, this implies f ∈ Lq(R3) for all q ∈ (1,2).
Theorem 4.1.5 yields existence of a solution to (4.16) satisfying (4.12).
Since u ∈ L6(R3), Theorem 4.1.5 further ensures that (u,p) coincides with
this solution up to an additive constant for p. We thus have

iku + e1 ∧u − e1 ∧x ⋅ ∇u, ∇2u, ∂1u, ∇p ∈ Lq(R3),
u ∈ L2q/(2−q)(R3), ∇u ∈ L4q/(4−q)(R3).
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4.2 The Time-Periodic Linear Problem

Since v = u and p = p on B2R, the integrability properties above in com-
bination with (4.42) show that v and p belong to the correct function
spaces.

Now consider general F ∈ Lq(Ω) and a sequence (Fj) ⊂ C∞0 (Ω) that
converges to F in Lq(Ω). As seen above, for each j ∈ N there exists
a solution (v, p) = (vj, pj) to (4.4) with F = Fj, which obeys estimate
(4.41). Additionally, this implies that (vj,∇pj) is a Cauchy sequence in
the function space defined by the norm on the left-hand side of (4.41), and
thus possesses a limit (v,∇p), which satisfies the resolvent problem (4.4)
and the resolvent estimate (4.41).

Remark 4.1.15. Note that for k = 0 we recover the well-known Lq theory
for the corresponding stationary problem; see [42, Theorem VIII.8.1] for
example.
Remark 4.1.16. In the classical study of resolvent problems, one considers
an operator A in a Banach space X and investigates solvability of the
equation su − Au = f for s ∈ C together with a corresponding resolvent
estimate of the form

∣s∣ ∥u∥X + ∥Au∥X ≤ C41∥f∥X .

In particular, if s ≠ 0, the solution u belongs to the same space X as the
data f . In contrast, the solution theory established in Theorem 4.1.14
does not fit into this setting, and we do not obtain a classical resolvent
estimate.

4.2 The Time-Periodic Linear Problem
After having established well-posedness of the resolvent problem in The-
orem 4.1.14, we now turn to the time-periodic problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ω(∂tu + e1 ∧u − e1 ∧x ⋅ ∇u) −∆u − λ∂1u +∇p = f in T ×Ω,
divu = 0 in T ×Ω,

u = 0 on T × ∂Ω,
(4.43)

where T = R/2πZ. In order to transfer the properties of the resolvent
problem to the time-periodic case, we work in a framework of absolutely
convergent Fourier series. Besides uniqueness and existence of a solution,
this allows to obtain a corresponding a priori estimate with the same
constant as in the resolvent estimate (4.41). In conclusion, we obtain
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4 Flow Past a Rotating Body

conditions when the constant is independent of λ and ω, which is crucial
for the fixed-point argument employed to solve the nonlinear problem
(4.1).

We first introduce the spaces of absolutely convergent Fourier series
and provide some inequalities necessary for the treatment of the nonlin-
ear problem (4.1). Afterwards, we establish well-posedness of the time-
periodic problem (4.43) in these function spaces.

4.2.1 The Functional Framework
Here we introduce the functional framework where we carry out the anal-
ysis of the time-periodic problem (4.1). For simplicity, we restrict to the
case of 2π-periodic functions, that is, to the torus group T = R/2πZ.

Let X be a semi-normed vector space with semi-norm ∥⋅∥X . To any
sequence (fk)k∈Z ⊂X we can formally associate a Fourier series

f(t) ∶= ∑
k∈Z

fk e
ikt . (4.44)

This series converges pointwise if the sequence of norms (∥fk∥X)k∈Z is
an element of `1(Z;R), which means (fk)k∈Z ∈ `1(Z;X). Recalling the
inverse Fourier transformation F −1

T on T, the equation (4.44) can thus
be expressed as f = F −1

T [(fk)k∈Z], so that f is an absolutely convergent
Fourier series. Clearly, these objects constitute a function space defined
by

A(T;X) ∶= {f ∶T→X ∣ f(t) = ∑
k∈Z

fk e
ikt, (fk)k∈Z ⊂X, ∑

k∈Z
∥fk∥X < ∞},

the space of functions on T with absolutely convergent Fourier series,
which we equip with the semi-norm

∥f∥A(T;X) ∶= ∑
k∈Z
∥fk∥X .

Then A(T;X) coincides with the space F −1
T [`1(Z;X)], which embeds into

the space C(T;X) of X-valued continuous functions on T. This property
also justifies the pointwise definition in (4.44).

Observe that if X is a normed space, then A(T;X) is also a normed
space, and if X is a Banach space, then A(T;X) is also a Banach space.

It is well known that the scalar-valued space A(T;R) is a Banach algebra
with respect to pointwise multiplication, the so-called Wiener algebra.
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One can generalize this property and derive estimates in the X-valued
case. For example, one readily shows the following correspondency of
Hölder’s inequality.

Proposition 4.2.1. Let D ⊂ Rn, n ∈ N, be an open set and p, q, r ∈ [1,∞]
such that 1/p + 1/q = 1/r, whereby 1/∞ ∶= 0 as customary. Moreover, let
f ∈ A(T; Lp(D)) and g ∈ A(T; Lq(D)). Then their product fg satisfies
fg ∈ A(T; Lr(D)) and

∥fg∥A(T;Lr(D)) ≤ ∥f∥A(T;Lp(D))∥g∥A(T;Lq(D)). (4.45)

Proof. By assumption we have f = F −1
T [(fk)] and g = F −1

T [(gk)] for el-
ements (fk) ∈ `1(Z; Lp(D)) and (gk) ∈ `1(Z; Lq(D)). Therefore, we have
fg =F −1

T [(fk) ∗Z (gk)]. Then the classical Hölder inequality implies

∥fg∥A(T;Lr(D)) = ∑
k∈Z
∥∑
`∈Z
f`gk−`∥

Lr(D)
≤ ∑

k∈Z
∑
`∈Z
∥f`gk−`∥Lr(D)

≤ ∑
k∈Z
∑
`∈Z
∥f`∥Lp(D)∥gk−`∥Lq(D) = ∥f∥A(T;Lp(D))∥g∥A(T;Lq(D)).

This completes the proof.

Remark 4.2.2. Here we single out the special case when one of the functions
involved in Proposition 4.2.1 only depends on time. Let f ∈ A(T;R) and
g ∈ A(T; Lq(Ω)). Then, the function f can also be regarded as an element
of A(T; L∞(D)). Consequently, (4.45) implies fg ∈ A(T; Lq(D)) and

∥fg∥A(T;Lq(D)) ≤ ∥f∥A(T;R)∥g∥A(T;Lq(D)).

Similarly to Proposition 4.2.1, we transfer the classical interpolation
inequality for Lebesgue spaces to the framework of the spaces A(T;X).

Proposition 4.2.3. Let D ⊂ Rn, n ∈ N, be an open set and p, q, r ∈ [1,∞]
such that

1 − θ
p
+ θ
q
= 1

r

for some θ ∈ [0,1], whereby 1/∞ ∶= 0 as customary. Then every function
f ∈ A(T; Lp(D)) ∩A(T; Lq(D)) satisfies f ∈ A(T; Lr(D)) and

∥f∥A(T;Lr(D)) ≤ ∥f∥1−θA(T;Lp(D))∥f∥θA(T;Lq(D)). (4.46)
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Proof. By assumption, we have the identity f =F −1
T [(fk)] for an element

(fk) ∈ `1(Z; Lp(D) ∩ Lq(D)). The classical interpolation inequality for
Lebesgue spaces together with an application of Hölder’s inequality on Z
yields

∥f∥A(T;Lr(D)) = ∑
k∈Z
∥fk∥Lr(D) ≤ ∑

k∈Z
∥fk∥1−θLp(D)∥fk∥θLq(D)

≤ ∥f∥1−θA(T;Lp(D))∥f∥θA(T;Lq(D)).

This completes the proof.

Observe that one can directly generalize Proposition 4.2.1 and Propo-
sition 4.2.3 to general measure spaces. For the sake of simplicity, we have
restricted ourselves to the Lebesgue measure here.
Remark 4.2.4. Note that we can easily transfer embedding properties to
the framework of these spaces. Let X and Y be two semi-normed spaces,
equipped with the semi-norms ∥⋅∥X and ∥⋅∥Y , such that X ↪ Y , that is, X
is continuously embedded in Y . This directly implies A(T;X) ↪ A(T;Y )
since for f ∈ A(T;X) with Fourier coefficients (fk)k∈Z ∈ `1(Z;X) one has

∑
k∈Z
∥fk∥Y ≤ C42∑

k∈Z
∥fk∥X = C42∥f∥A(T;X),

where C42 is the embedding constant of the embedding X ↪ Y .
The main advantage of the space A(T;X) is that we can directly trans-

fer a priori estimates for a resolvent problem to a priori estimates for the
corresponding time-periodic problem. Recall that in general this is not
possible in a classical Lebesgue framework of spaces of the form Lq(T;X)
as we pointed out before.

4.2.2 Well-Posedness
Now we show the existence of a solution to the time-periodic problem
(4.43) by reducing it to the resolvent problem (4.4) treated in Theorem
4.1.14.

Theorem 4.2.5. Let Ω ⊂ R3 be an exterior domain of class C3. Let
q ∈ (1,2) and λ, ω, θ, B > 0 with λ2 ≤ θω ≤ B. For every f ∈ A(T; Lq(Ω))3
there exists a solution (u,p) to (4.43) subject to the estimate

ω∥∂tu + e1 ∧u − e1 ∧x ⋅ ∇u∥A(T;Lq(Ω)) + ∥∇2u∥A(T;Lq(Ω))

+ λ∥∂1u∥A(T;Lq(Ω)) + λ1/2∥u∥A(T;Ls1(Ω)) + λ1/4∥∇u∥A(T;Ls2(Ω))

+ ∥∇p∥A(T;Lq(Ω)) ≤ C43∥f∥A(T;Lq(Ω))

(4.47)
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for a constant C43 = C43(Ω, q, λ, ω) > 0 and s1 = 2q/(2− q), s2 = 4q/(4− q).
Additionally, if (w,q) is another solution to (4.43) in the function class

defined by the norms on the left-hand side of (4.47), then u = w and
p = q + q0 for some (spatially constant) function q0∶T→ R.

Moreover, if q ∈ (1, 32), then the constant C43 can be chosen independently
of λ and ω such that C43 = C43(Ω, q, θ,B).
Proof. If (u,p) is a solution to (4.43), in the above function class, then
the k-th Fourier coefficients v ∶= F −1

T [u](k) and p ∶= F −1
T [p](k) satisfy

the resolvent problem (4.4) with right-hand side F ∶= F −1
T [f](k). The

uniqueness statement of Theorem 4.2.5 is thus a direct consequence of the
uniqueness statement of Theorem 4.1.14.

To show existence of a solution satisfying (4.47), consider a function
f ∈ A(T; Lq(Ω)). Then

f(t, x) = ∑
k∈Z

fk(x) eikt

with fk ∈ Lq(Ω) for k ∈ Z. Let (uk,pk) = (v, p) be a solution to the
resolvent problem (4.4) with right-hand side F = fk that exists due to
Theorem 4.1.14. We define

u(t, x) ∶= ∑
k∈Z

uk(x) eikt, p(t, x) ∶= ∑
k∈Z

pk(x) eikt .

By (4.41), u and p are well defined and satisfy problem (4.43). We directly
conclude estimate (4.47) from estimate (4.41) with coincident constants
C43 = C40.

Remark 4.2.6. Recall that the constant C40 in the resolvent estimate (4.41)
was independent of the actual resolvent parameter k ∈ Z. Therefore, as
shown in the previous proof, it coincides with the constant C43 in the
a priori estimate (4.47) for the time-periodic problem. In particular, we
can thus choose the constant C43 independently of λ and ω if 1 < q < 3/2,
which will be crucial to show existence of a solution to (4.1) in the next
section.

4.3 The Nonlinear Problem
Now we begin with the study of the nonlinear problem (4.1). First of all,
we formulate it as a problem with homogeneous boundary conditions and
derive suitable nonlinear estimates. We then apply the linear theory es-
tablished in Theorem 4.2.5 to show existence of a solution to the nonlinear
system by the contraction mapping principle.
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4.3.1 Reformulation of the Problem
In order to show existence of a solution to (4.1), we transform it to a
problem with homogeneous boundary conditions. To this end, we use the
following simple lemma that is an analogue of Lemma 3.3.1.

Lemma 4.3.1. Let Ω ⊂ Rn be an exterior domain and R > δ(Ωc). Then
there exists a function W ∈ C∞0 (Rn)n with suppW ⊂ BR, divW ≡ 0 and
W ∣∂Ω = e1 ∧x.

Proof. The proof is analogous to that of Lemma 3.3.1. Consider a second
radius R0 > 0 with δ(Ωc) < R0 < R, and let ϕ ∈ C∞0 (Rn) with ϕ ≡ 1 on BR0

and ϕ ≡ 0 on BR. We define the function W ∶Rn → Rn by

W (x) ∶= −1
2
curl [ e1 ∣x∣2ϕ(x)]

Then W ∈ C∞0 (Rn)n, suppW ⊂ BR and

divW (x) = −1
2
div curl [ e1 ∣x∣2ϕ(x)] = 0

Moreover, for x ∈ ∂Ω we have ∣x∣ < R0, and therefore

W (x) = −1
2
curl [ e1 ∣x∣2] = e1 ∧x.

This completes the proof.

For fixed R > δ(Ωc), consider the functions V and W from Lemma 3.3.1
and Lemma 4.3.1 and define

U ∶T ×R3 → R3, U(t, x) = α(t)V + ωW. (4.48)

Then U(t, ⋅) ∈ C∞0 (R3) for all t ∈ T, and the time regularity of U coincides
with that of α. Below we will assume α, d

dtα ∈ A(T;R), so that U ∈
C1(T ×R3). Now define v ∶= u − U and p ∶= p. Then (u,p) solves (4.1) if
and only if (v, p) solves

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω(∂tv + e1 ∧v − e1 ∧x ⋅ ∇v) −∆v − λ∂1v +∇p = f +N(v) in T ×Ω,
div v = 0 in T ×Ω,

v = 0 on T × ∂Ω,
lim
∣x∣→∞

v(t, x) = 0 for t ∈ T,

(4.49)
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4.3 The Nonlinear Problem

where

N(v) ∶= (P�α)∂1v − ω(∂tU + e1 ∧U − e1 ∧x ⋅ ∇U)
+∆U + α∂1U − v ⋅ ∇v −U ⋅ ∇v − v ⋅ ∇U −U ⋅ ∇U.

(4.50)

Recall that P�α = α − λ. It thus remains to show existence of a solution
to the nonlinear system (4.49).

4.3.2 Existence of a Solution
To show existence of a solution to (4.49), we first set up the functional
framework. For the sake of clarity, we introduce the abbreviations

∥α∥A ∶= ∥α∥A(T;R), ∥f∥As ∶= ∥f∥A(T;Ls(Ω))

for s ∈ (1,∞). For λ, ω > 0 and q ∈ (1,2) we define the function space

X q
λ,ω(T ×Ω) ∶= {v ∈ L1

loc(T ×Ω) ∣ ∥v∥X q
λ,ω
< ∞},

where

∥v∥X q
λ,ω
∶= ω∥∂tv + e1 ∧v − e1 ∧x ⋅ ∇v∥Aq

+ ∥∇2v∥Aq + λ∥∂1v∥Aq + λ1/2∥v∥As1 + λ1/4∥∇v∥As2

with s1 ∶= 2q/(2 − q) and s2 ∶= 4q/(4 − q). We establish the following
estimates of the nonlinear term N(v) from (4.50) under the assumption
that the (time-dependent) translation velocity α satisfies α, d

dtα ∈ A(T;R).

Lemma 4.3.2. Let q ∈ [65 , 43], 0 < λ ≤ λ0 and 0 < ω ≤ ω0. Let v1, v2 ∈
X q

λ,ω(T ×Ω). There exists a constant C44 = C44(Ω, q, λ0, ω0) > 0 such that

∥N(v1)∥Aq

≤ C44(λ−1∥P�α∥A∥v1∥X q
λ,ω
+ λ−(3q−3)/q∥v1∥2X q

λ,ω

+ (λ + ω + ∥P�α∥A)(1 + ∥P�α∥A + ∥ ddtα∥A + ∥v1∥X q
λ,ω
)),

(4.51)

∥N(v1) −N(v2)∥Aq

≤ C44(λ−1∥P�α∥A + λ + ω + ∥P�α∥A
+ λ−(3q−3)/q(∥v1∥X q

λ,ω
+ ∥v2∥X q

λ,ω
)) ∥v1 − v2∥X q

λ,ω
.

(4.52)

Proof. Let v ∈ X q
λ,ω(T ×Ω). In view of Remark 4.2.2, we have

∥(P�α)∂1v∥Aq ≤ ∥P�α∥A∥∂1v∥Aq ≤ ∥P�α∥Aλ−1∥v∥X q
λ,ω
.
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4 Flow Past a Rotating Body

By the definition of U in (4.48) and the decomposition α = λ + P�α, we
further have

ω∥∂tU + e1 ∧U − e1 ∧x ⋅ ∇U∥Aq ≤ c0ω(∥ ddtα∥A∥V ∥Aq + ∥U∥Aq + ∥∇U∥Aq)
≤ c1ω(∥ ddtα∥A + λ + ω + ∥P�α∥A).

Similarly, we obtain

∥∆U∥Aq ≤ c2(λ + ω + ∥P�α∥A),
∥α∂1U∥Aq ≤ c3(λ + ∥P�α∥A)(λ + ω + ∥P�α∥A).

Additionally using Proposition 4.2.1, the Sobolev inequality and Remark
4.2.4, we further have

∥U ⋅ ∇v + v ⋅ ∇U +U ⋅ ∇U∥Aq

≤ c4(∥v∥A3q/(3−2q)∥∇U∥A3/2 + ∥U∥A3∥∇v∥A3q/(3−q) + ∥U∥A2q∥∇U∥A2q)
≤ c5(λ + ω + ∥P�α∥A)(∥v∥X q

λ,ω
+ λ + ω + ∥P�α∥A).

Finally, let us treat the critical term v ⋅∇v. Since the assumption q ∈ [65 , 43]
implies 4q

4−q ≤ 2 ≤
3q
3−q , we can employ estimates (4.45) and (4.46) to obtain

∥v ⋅ ∇v∥Aq ≤ ∥v∥A2q/(2−q)∥∇v∥A2 ≤ c6∥v∥A2q/(2−q)∥∇v∥1−θA4q/(4−q)∥∇v∥θA3q/(3−q)

with θ = 12−9q
q . By the Sobolev inequality and Remark 4.2.4, we deduce

∥v ⋅ ∇v∥Aq ≤ c7λ−1/2−(1−θ)/4∥v∥2−θX q
λ,ω
∥∇2v∥θAq ≤ c8λ−(3q−3)/q∥v∥2X q

λ,ω
.

Collecting the above estimates and using λ ≤ λ0 and ω ≤ ω0, we obtain
(4.51). Estimate (4.52) follows in the same way.

After these preparations, we can now show the existence of a solution
to the nonlinear problem (4.1) by reformulating (4.49) as a fixed-point
equation by means of the solution theory to the time-periodic problem
established in Theorem 4.2.5. We then establish existence of a solution to
the resulting fixed-point equation by the contraction mapping principle.

Theorem 4.3.3. Let Ω ⊂ R3 be an exterior domain of class C3, and let
q ∈ [65 , 43]. Let f ∈ A(T; Lq(Ω))3 and α ∈ A(T;R) such that d

dtα ∈ A(T;R)
and define

λ ∶= ∫
T

α(t)dt.
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4.3 The Nonlinear Problem

For all ρ ∈ (3q−3q ,1) and θ > 0 there are constants κ > 0 and λ0 > 0 such
that for all

λ ∈ (0, λ0], ω ∈ [λ
2

θ
, κλρ] (4.53)

there exists ε > 0 such that if

∥α − λ∥A(T;R) + ∥f∥A(T;Lq(Ω)) ≤ ε,

then there is a solution (u,p) to (4.1) with

u ∈ A(T; L2q/(2−q)(Ω))3,
∇u ∈ A(T; L4q/(4−q)(Ω))3×3,
∇2u ∈ A(T; Lq(Ω))3×3×3,
∂tu + e1 ∧u − e1 ∧x ⋅ ∇u, ∂1u, ∇p ∈ A(T; Lq(Ω))3.

Proof. In order to obtain a solution to (4.49) by a fixed-point argument,
we consider the problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ω(∂tw + e1 ∧w − e1 ∧x ⋅ ∇w) −∆w − λ∂1w +∇q = f +N(v) in T ×Ω,
divw = 0 in T ×Ω,

w = 0 on T × ∂Ω,
(4.54)

for given v ∈ X q
λ,ω(T × Ω). Since Lemma 4.3.2 ensures that N(v) ∈

A(T; Lq(Ω)), Theorem 4.2.5 shows the existence of a unique velocity field
w ∈ X q

λ,ω(T×Ω) and a pressure field q with ∇q ∈ A(T; Lq(Ω))3 that satisfy
(4.54). We thereby obtain a solution map Sλ,ω ∶ X q

λ,ω → X
q
λ,ω, v ↦ w. More-

over, Theorem 4.2.5 (where we can set B = 1) and Lemma 4.3.2 yield the
estimate

∥Sλ,ω(v)∥X q
λ,ω
≤ C40(∥f∥Aq + ∥N(v)∥Aq)
≤ c0(ε + ελ−1∥v∥X q

λ,ω
+ λ−(3q−3)/q∥v∥2X q

λ,ω

+ (λ + ω + ε)(1 + ε + ∥ ddtα∥A(T;R) + ∥v∥X q
λ,ω
))

with c0 = C40(1 + C44) independent of λ and ω. Therefore, Sλ,ω is a self-
mapping on the closed subset

Mδ ∶= {v ∈ X q
λ,ω ∣ ∥v∥X q

λ,ω
≤ δ}
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4 Flow Past a Rotating Body

of X q
λ,ω(T ×Ω) provided

c0(ε + ελ−1δ + λ−(3q−3)/qδ2 + (λ +ω + ε)(1 + ε + ∥ ddtα∥A(T;R) + δ)) ≤ δ. (4.55)

For ρ ∈ (3q−3q ,1) we choose δ ∶= λρ. Moreover, let ε = λ2 and ω ≤ κδ for
some κ > 0. Then (4.55) holds if

c0(λ2−ρ + λ + λρ−(3q−3)/q + (λ1−ρ + κ + λ2−ρ)(1 + λ2 + ∥ ddtα∥A(T;R) + λρ)) ≤ 1.

This condition is satisfied for all λ ≤ λ0 if we choose λ0 and κ sufficiently
small. Similarly, for v1, v2 ∈Mδ we have

∥Sλ,ω(v1) − Sλ,ω(v2)∥Aq ≤ C40∥N(v1) −N(v2)∥Aq

≤ C40C44(ελ−1 + λ + ω + ε + 2λ−(3q−3)/qδ) ∥v1 − v2∥X q
λ,ω
.

With the same choices of parameters as above, this yields that Sλ,ω is a
contraction on the set Mδ if

C40C44(2λ + κλρ + λ2 + 2λρ−(3q−3)/q) ≤
1

2
,

which holds if λ ≤ λ0 and λ0 is sufficiently small. In total, we thus ob-
tain that, under the above choice of parameters, the solution map Sλ,ω
is a contractive self-mapping. Finally, the contraction mapping principle
yields the existence of a fixed point v ∈ X q

λ,ω of Sλ,ω, and hence of a solution
(v, p) to (4.49). Consequently, (u,p) ∶= (v + U, p) is a solution to (4.1) in
the asserted function space.

Remark 4.3.4. The lower bound λ2

θ ≤ ω on the angular velocity in (4.53)
may seem strange since, from a physical point of view, the limit ω → 0,
which corresponds to the case of a non-rotating body, seems uncritical.
The lower bound on ω in the condition (4.53) is an artifact of the change
of coordinates into the rotating frame of reference employed in the math-
ematical analysis of the linear problem, which leads to a priori estimates
with constants that exhibit a singular behavior as ω → 0. As a con-
sequence, a lower bound on ω is necessary in Theorem 4.3.3 to obtain
existence of a solution via a fixed-point iteration. A similar observation
was made in the investigation of a steady flow past a rotating and trans-
lating body carried out in [30]. From a mathematical point of view, it is
therefore not surprising that the same effect appears in the more general
time-periodic case investigated here.
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A classical concept in the theory of partial differential equations is
the notion of fundamental solutions. Fundamental solutions to both the
steady-state and the initial-value linearized Navier–Stokes equations have
been studied for many decades, initiated by Lorentz [80] and Oseen
[85]. In contrast, a fundamental solution to the time-periodic Stokes sys-
tem was introduced just recently by Kyed [76]. In this chapter, we extend
this latter result in various directions. Firstly, we derive a time-periodic
fundamental solution to the general linearized Navier–Stokes equations in
both the Stokes and the Oseen case in dimension n ≥ 2. The correspond-
ing results were published in [21]. Secondly, we introduce a time-periodic
fundamental solution for the vorticity field associated with a solution to
the linearized Navier–Stokes equations in three dimensions.
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5 Time-Periodic Fundamental Solutions

These time-periodic fundamental solutions always consist of two parts:
A steady-state part that coincides with the fundamental solution to the
steady-state problem, and a second purely periodic part. While integra-
bility properties and pointwise estimates of the former are well known
from the theory of steady-state problems, we establish corresponding re-
sults for the purely periodic parts. These properties enable us to identify
the fundamental solutions as regular distributions on a Schwartz–Bruhat
space and express convolutions with the fundamental solutions in terms
of classical integrals. Moreover, they facilitate the investigation of spatial
decay of time-periodic solutions to both the linearized and the nonlinear
Navier–Stokes equations. While the study of the first is straightforward,
the latter is more involved and will be the topic of Chapter 6.

In Section 5.1 we recall the fundamental solutions to the steady-state
Stokes and Oseen equations and we examine a fundamental solution to
a Helmholtz equation with a drift term. Based on these steady-state
fundamental solutions, we introduce time-periodic fundamental solutions
to the Stokes and Oseen equations in Section 5.2 and establish point-
wise estimates and integrability properties. In Section 5.3 we introduce
and investigate a fundamental solution for the vorticity field in the three-
dimensional case.

5.1 Classical Fundamental Solutions
In this section, we consider several steady-state problems. After recalling
the fundamental solutions to the Laplace equation as well as to the steady-
state Stokes and Oseen equations, we introduce a fundamental solution to
a Helmholtz equation with a drift term. We subsequently derive estimates
of the convolution of this fundamental solution with the Laplace funda-
mental solution, which is a preparation for the study of the time-periodic
fundamental solutions in Section 5.2. At the end of this section, we collect
specific results in the three-dimensional case.

5.1.1 The Stokes and Oseen Equations
Here we recall fundamental solutions to several time-independent prob-
lems and the basic concept of fundamental solutions. To begin with, we
consider the Laplace equation

−∆u = f in Rn (5.1)
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5.1 Classical Fundamental Solutions

for n ≥ 2. A fundamental solution to this equation is the well-known
Laplace fundamental solution given by

ΓL∶Rn ∖ {0} → R, ΓL(x) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− 1

2π
log ∣x∣ if n = 2,

1

(n − 2)ωn

∣x∣2−n if n > 2,
(5.2)

where ωn denotes the surface area of the (n − 1)-dimensional unit sphere
in Rn. Then ΓL ∈ S ′(Rn) is a solution to −∆ΓL = δRn in the sense of
distributions. Due to this property, for f ∈ S (Rn) a solution u to (5.1)
can be computed explicitly by the convolution

u = ΓL ∗ f. (5.3)

Since ΓL is not only an abstract distribution in S ′(Rn) but represented
by the function (5.2), this convolution is a classical integral. This fact can
be exploited to derive properties of the solution u from properties of the
fundamental solution and the right-hand side f , which can be seen as the
main advantage of this kind of representation formula.

Of course, this approach was also applied in the theory of Navier–Stokes
equations. We consider the stationary linearized Navier–Stokes equations

{
−∆v − λ∂1v +∇p = f in Rn,

div v = 0 in Rn (5.4)

for a parameter λ ∈ R. For λ = 0 this system is called the steady-state
Stokes system, and for λ ≠ 0 it is called the steady-state Oseen system.
Here, f ∶Rn → Rn is a given right-hand side, and the solution consists of
a velocity field v∶Rn → Rn and a pressure field p∶Rn → R. By analogy to
(5.3), a fundamental solution Φ0 to (5.4) is a distribution such that we
can express the solution (v, p) to (5.4) as

(v
p
) ∶= Φ0 ∗ f. (5.5)

Therefore, the fundamental solution Φ0 is a tensor field

Φ0 ∶=
⎛
⎜⎜⎜
⎝

Γ λ
0,11 . . . Γ λ

0,1n

⋮ ⋱ ⋮
Γ λ
0,n1 . . . Γ λ

0,nn

γ0,1 . . . γ0,n

⎞
⎟⎟⎟
⎠
∈S ′(Rn)(n+1)×n. (5.6)
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5 Time-Periodic Fundamental Solutions

Then, the fundamental solution consists of the velocity fundamental solu-
tion Γ λ

0 = (Γ λ
0,j`)nj,`=1 and the pressure fundamental solution γ0 = (γ0,j)nj=1,

which leads to the representation formulas

v = Γ λ
0 ∗ f, p = γ0 ∗ f.

The components of Φ0 satisfy the distributional equations

{
−∆Γ λ

0,j` − λ∂1Γ λ
0,j` + ∂jγ0,` = δj`δRn ,

∂hΓ
λ
0,h` = 0

(5.7)

for all j, ` = 1, . . . , n, where we employ the Einstein summation convention
in the second line. The fundamental solution to this problem is well known,
but it heavily depends on whether λ = 0 or λ ≠ 0. In the Stokes case (λ = 0),
a velocity fundamental solution Γ λ

0 = Γ S∶Rn ∖{0} → Rn×n to (5.7) is given
by

Γ S
j`(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

2ωn

( − δj` log ∣x∣ +
xjx`

∣x∣2
) if n = 2,

1

2ωn

(δj`
1

n − 2 ∣x∣
2−n + xjx`∣x∣n ) if n ≥ 3;

(5.8)

see [42, Section IV.2] for example. In the Oseen case (λ ≠ 0), a velocity
fundamental solution Γ λ

0 = ΓO to (5.7) is given by

ΓO∶Rn ∖ {0} → Rn×n, ΓO
j`(x) ∶= [δj`∆ − ∂j∂`]Ψλ

0(x) (5.9)

with

Ψλ
0(x) =

1

λ

x1

∫
0

[ΓL(τ, x2, . . . , xn) −Ξ(τ, x2, . . . , xn)]dτ

+ 1

4π

−x2

∫
0

(τ + x2)K0(λ∣τ ∣)dτ

if n = 2, and

Ψλ
0(x) =

1

λ

x1

∫
−∞

[ΓL(τ, x2, . . . , xn) −Ξ(τ, x2, . . . , xn)]dτ

if n ≥ 3, where ΓL is the Laplace fundamental solution defined in (5.2) and

Ξ(x) ∶= 1

2π
( λ

4π∣x∣)
n−2
2

Kn−2
2
(λ
2
∣x∣) e−λ

2
x1 ;
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5.1 Classical Fundamental Solutions

see [42, Section VII.3] for example. Here, Kν denotes the modified Bessel
function of the second kind; see Section A.1.1. In both the Stokes and the
Oseen case, a pressure fundamental solution is given by

γ0∶Rn ∖ {0} → Rn, γ0,j(x) ∶= −
1

ωn

xj
∣x∣n = ∂jΓL(x). (5.10)

Finally, Γ λ
0 and γ0 constitute a fundamental solution in the form (5.6) to

the steady-state linearized Navier–Stokes equations (5.4).

5.1.2 The Helmholtz Equation with a Drift Term
Next we study a fundamental solution to the equation

iη v −∆v − λ∂1v = f in Rn (5.11)

for given parameters λ ∈ R and η ∈ R ∖ {0}. Note that for λ = 0 this is
the classical Helmholtz equation. First of all, let us treat this special case
and consider the function

Γ µ
H ∶Rn ∖ {0} → C, Γ µ

H(x) ∶=
i

4

⎛
⎝

√−µ
2π∣x∣

⎞
⎠

n−2
2

H
(1)
n−2
2

(√−µ ∣x∣)

for µ ∈ C ∖ R. Here H(1)ν denotes the Hankel function of the first kind
(see Subsection A.1.1) and

√
z is the square root of z with nonnegative

imaginary part. Then Γ µ
H is a fundamental solution to the Helmholtz

equation
µΓ µ

H −∆Γ
µ
H = δRn ;

see [98, Chapter 5.8] for example. We shall use this fact to find a fun-
damental solution to (5.11). For λ ∈ R and η ≠ 0, we define the function
Γ η,λ
H ∶Rn ∖ {0} → C by

Γ η,λ
H (x) ∶= Γ

µ
H(x) e−

λ
2
x1 = i

4

⎛
⎝

√−µ
2π∣x∣

⎞
⎠

n−2
2

H
(1)
n−2
2

(√−µ ∣x∣) e−λ
2
x1 (5.12)

with µ ∶= µ(η, λ) ∶= (λ/2)2 + iη ∈ C ∖ R. In order to see that Γ η,λ
H is a

fundamental solution to (5.11), we further analyze the term √−µ in the
following lemma. Its proof mainly relies on an explicit computation of
this quantity.
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Lemma 5.1.1. Let η0 > 0 and λ ∈ R. Then there exists a constant
C45 = C45(λ, η0) > 0 such that

Im(√−µ) − ∣λ∣
2
≥ C45∣η∣

1
2 (5.13)

for all η ∈ R with ∣η∣ ≥ η0 and µ = (λ/2)2 + iη.

Proof. For λ = 0 the statement follows directly with C45 = 1/
√
2. If we

assume λ ≠ 0, then

√−µ = ((λ/2)4 + η2)
1
4 exp ( i

2
(π + arctan(4ηλ−2))).

Using the identity 2 cos2(x) = 1 + cos(2x), we thus obtain

Im(√−µ) = ((λ/2)4 + η2)
1
4 sin (1

2
(π + arctan(4ηλ−2)))

= ((λ/2)4 + η2)
1
4 cos (1

2
arctan(4ηλ−2))

= ((λ/2)4 + η2)
1
4
1√
2
(1 + cos (arctan(4ηλ−2)))

1
2 .

We employ the identity cos(arctan(x)) = (1 + x2)−1/2 to further deduce

Im(√−µ) = ((λ/2)4 + η2)
1
4
1√
2
(1 + (1 + (4ηλ−2)2)−

1
2)

1
2

= ∣λ∣
2

1√
2
((1 + η2

(λ/2)4
)

1
2

+ 1)
1
2

.

Consequently, we have Im(√−µ) − ∣λ∣/2 > 0 for η ≠ 0, and

lim
∣η∣→∞

Im(√−µ) − ∣λ∣/2
∣η∣

1
2

= 1√
2
.

This implies the assertion since ∣η∣ ≥ η0.

With the help of the previous lemma and the results on Hankel functions
from Subsection A.1.1 and the estimates from Subsection A.1.2, we can
now establish the following pointwise estimates of Γ η,λ

H and its derivatives.
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Lemma 5.1.2. For all ε, η0 > 0, λ ∈ R and m ∈ N0, there exists a constant
C46 = C46(n, ε, λ, η0) > 0 such that

∣Γ η,λ
H (x)∣ ≤ C46∣µ∣

n−3
4 ∣x∣

1−n
2 e−C45∣η∣

1
2 ∣x∣, (5.14)

∣∇mΓ η,λ
H (x)∣ ≤ C46∣η∣−1 ∣x∣−n−m e−C45∣η∣

1
2 ∣x∣/2 (5.15)

for all x ∈ Rn with ∣x∣ ≥ ε and all η ∈ R with ∣η∣ ≥ η0. Here, C45 is the
constant from Lemma 5.1.1.

Proof. Recalling the definition of Γ η,λ
H in (5.12) and estimate (A.67) for

the Hankel functions, we obtain

∣Γ η,λ
H (x)∣ ≤ c0∣µ∣

n−2
4 ∣x∣

2−n
2 ∣H(1)n−2

2

(√−µ ⋅ ∣x∣)∣ e
∣λ∣
2
∣x∣

≤ c1∣µ∣
n−3
4 ∣x∣

1−n
2 e− Im(

√−µ)∣x∣+ ∣λ∣
2
∣x∣ .

Estimating now the exponential function with the help of (5.13), we im-
mediately arrive at (5.14). Another elementary estimate implies

∣Γ η,λ
H (x)∣ ≤ c1∣η∣

−1 ∣x∣−n(∣η∣
1
2 ∣x∣)

n+1
2 e−C45∣η∣

1
2 ∣x∣ ≤ c2∣η∣−1 ∣x∣−n e−C45∣η∣

1
2 ∣x∣/2,

which is (5.15) for m = 0. To derive (5.15) for general m ∈ N0, we compute
the derivatives of Γ η,λ

H . By the Leibniz rule, for α ∈ Nn
0 we have

DαΓ η,λ
H (x) =

i

4

⎛
⎝

√−µ
2π

⎞
⎠

n−2
2

∑
β≤α

cβD
β[∣x∣

2−n
2 e−

λ
2
x1 ]Dα−β[H(1)n−2

2

(√−µ ∣x∣)].

Estimates of the derivatives appearing on the right-hand side can be found
in Lemma A.1.5 and Lemma A.1.3. We thus deduce

∣DαΓ η,λ
H (x)∣ ≤ c3∣µ∣

n−2
4 ∑

β≤α
∣x∣

2−n
2 e−

λ
2
x1 ∣µ∣

2∣α−β∣−1
4 ∣x∣−

1
2 e− Im(

√−µ)∣x∣

≤ c4∣µ∣
n+2∣α∣−3

4 ∣x∣
1−n
2 e− Im(

√−µ)∣x∣+ ∣λ∣
2
∣x∣,

where we used ∣µ∣ ≥ ∣η∣ ≥ η0. By employing Lemma 5.1.1 and the inequality
∣µ∣ ≤ c5∣η∣ with c5 = c5(λ, η0) > 0, we arrive at

∣DαΓ η,λ
H (x)∣ ≤ c6∣η∣

−1∣x∣−(n+∣α∣)(∣η∣
1
2 ∣x∣)

n+2∣α∣+1
2 e−C45∣η∣

1
2 ∣x∣

≤ c7∣η∣−1∣x∣−(n+∣α∣) e−C45∣η∣
1
2 ∣x∣/2,

which implies (5.15). This completes the proof.
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Next we derive an estimate that describes the asymptotic behavior of
Γ η,λ
H (x) as ∣x∣ → 0. It will be a direct consequence of the according esti-

mates for Hankel functions given in Lemma A.1.1.
Lemma 5.1.3. For all λ, η ∈ R with η ≠ 0 and R ∈ (0,1) there is a
constant C47 = C47(n,R,λ) > 0 such that

∣Γ η,λ
H (x)∣ ≤ C47∣x∣−n+2 e

λ
2
x1 if n > 2, (5.16)

∣Γ η,λ
H (x)∣ ≤ C47∣log(∣µ∣

1
2 ∣x∣)∣ eλ

2
x1 if n = 2, (5.17)

for all x ∈ Rn with ∣µ∣
1
2 ∣x∣ ≤ R.

Proof. From the definition of Γ η,λ
H in (5.12) we directly conclude

∣Γ η,λ
H (x)∣ ≤ c0∣µ∣

n−2
4 ∣x∣−

n+2
2 ∣H(1)n−2

2

(√−µ ∣x∣)∣ e−λ
2
x1 .

Now (5.16) and (5.17) are direct consequences of the estimates (A.68) and
(A.69) for Hankel functions.

Now we can verify that Γ η,λ
H is an element of S ′(Rn) and a fundamental

solution to (5.11), that is, it satisfies the equation

iη Γ η,λ
H −∆Γ η,λ

H − λ∂1Γ η,λ
H = δRn . (5.18)

The proof will mainly be based on the estimates of Γ η,λ
H derived in the

previous lemmas.
Lemma 5.1.4. For all λ ∈ R and η ∈ R ∖ {0}, the function Γ η,λ

H is a
fundamental solution in S ′(Rn) to (5.18), it is an element of L1(Rn) and
satisfies

Γ η,λ
H =F −1

Rn[ 1

iη + ∣ξ∣2 − iλξ1
]. (5.19)

Proof. From Lemma 5.1.2 and Lemma 5.1.3, we immediately conclude
Γ η,λ
H ∈ L1(Rn) ⊆S ′(Rn). Now, a short computation leads to

[iη −∆ − λ∂1]Γ η,λ
H

= (iηΓ µ
H −∆Γ

µ
H + λ∂1Γ

µ
H −

λ2

4
Γ µ
H − λ∂1Γ

µ
H +

λ2

2
Γ µ
H) e−

λ
2
x1

= ( −∆Γ µ
H + µΓ

µ
H) e−

λ
2
x1 = δRn .

Therefore, Γ η,λ
H is a fundamental solution to (5.18). Applying the Fourier

transform to this identity, we obtain (iη + ∣ξ∣2 − iλξ1)FRn[Γ η,λ
H ] = 1. Due

to η ≠ 0, this implies (5.19) and completes the proof.
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5.1.3 A Convolution Estimate
Here we consider the convolution of Γ η,λ

H with the Laplace fundamental
solution ΓL defined in (5.2). The presented result will be the key to derive
pointwise estimates of the time-periodic fundamental solution later. The
proof is based on the estimates of Γ η,λ

H from Lemma 5.1.2 and Lemma
5.1.3. Moreover, for m ≥ 1 we frequently use the estimate

∣∇mΓL(x)∣ ≤ C48∣x∣2−n−m, (5.20)

which is a direct consequence of (5.2).

Lemma 5.1.5. Let λ ∈ R and η ∈ R ∖ {0}. Then the convolution integral

[ΓL ∗ Γ η,λ
H ](x) = ∫

Rn

ΓL(x − y)Γ η,λ
H (y)dy (5.21)

exists for all x ∈ Rn ∖ {0} and ΓL ∗ Γ η,λ
H ∈ L1

loc(Rn). Moreover, ΓL ∗ Γ η,λ
H ∈

C∞(Rn∖{0})∩Wk,1
loc(Rn) for all k ∈ N0, and for all β ∈ Nn

0 with ∣β∣ ≥ 1 and
all ε, η0 > 0 there exists a constant C49 = C49(n,λ, η0, β, ε) > 0 such that

∣Dβ[ΓL ∗ Γ η,λ
H ](x)∣ ≤ C49 ∣η∣−1 ∣x∣2−n−∣β∣ (5.22)

for all η ∈ R with ∣η∣ ≥ η0 and all x ∈ Rn with ∣x∣ ≥ ε.

Proof. In virtue of Lemma A.2.1, the estimates from Lemma 5.1.2 and
Lemma 5.1.3 together with (5.20) imply that the right-hand side of (5.21)
is well defined for x ≠ 0 and that ΓL ∗ Γ η,λ

H ∈ L1
loc(Rn) ∩C1(Rn ∖ {0}) with

∂j[ΓL ∗ Γ η,λ
H ](x) = ∫

Rn

∂jΓL(x − y)Γ η,λ
H (y)dy. (5.23)

Now fix ε > 0 and consider some x ∈ Rn with ∣x∣ ≥ ε. Put R ∶= ∣x∣2 . Let
χ ∈ C∞0 (R;R) be a cut-off function with

χ(r) = 1 if 1 ≤ ∣r∣ ≤ 3, χ(r) = 0 if 0 ≤ ∣r∣ ≤ 1

2
or ∣r∣ ≥ 4,

and define χR ∶ Rn → R by χR(y) ∶= χ(R−1∣y∣). We decompose (5.23) as

∂j[ΓL ∗ Γ η,λ
H ](x) = I1(x) + I2(x) + I3(x)
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where
I1(x) = ∫

BR

∂jΓL(x − y)Γ η,λ
H (y) (1 − χR(y))dy,

I2(x) = ∫
B3R

∂jΓL(x − y)Γ η,λ
H (y) (1 − χR(y))dy,

I3(x) = ∫
B4R∖BR/2

∂jΓL(x − y)Γ η,λ
H (y)χR(y)dy.

We consider each term separately. In virtue of the decay properties of ΓL

from (5.20) and the estimates of Γ η,λ
H in Lemma 5.1.3 and Lemma 5.1.2,

we see that I1 ∈ C∞(Rn ∖ {0}) ∩Wk,1
loc(Rn) for all k ∈ N0 by Lemma A.2.1.

Since ∣y∣ ≤ R implies ∣x − y∣ ≥ ∣x∣ − ∣y∣ ≥ R/2, estimate (5.20) yields

∣DαI1(x)∣ = ∣∫
BR

∂jD
αΓL(x − y)Γ η,λ

H (y) (1 − χR(y))dy∣

≤ c0∫
BR

∣∂jDαΓL(x − y)∣∣Γ η,λ
H (y)∣dy

≤ c1∫
Rn

R1−n−∣α∣ ∣Γ η,λ
H (y)∣dy.

We split this integral at a radius δ = 1
2 ∣µ∣

− 1
2 . With (5.14) we obtain

∫
Bδ

∣Γ η,λ
H (y)∣dy ≤ c2∣µ∣

n−3
4 ∫

Bδ

∣y∣
1−n
2 e−C45∣η∣

1
2 ∣y∣ dy

≤ c3∣µ∣−1 ∫
B1/2

∣y∣
1−n
2 e−C45∣η∣

1
2 ∣µ∣−

1
2 ∣y∣ dy ≤ c4∣µ∣−1 ∫

B1/2

∣y∣
1−n
2 dy ≤ c5∣η∣−1.

Similarly, from Lemma 5.1.3 we deduce

∫
Bδ

∣Γ η,λ
H (y)∣dy ≤ c6∫

Bδ

∣y∣−n+2 eλ
2
y1 dy

≤ c7∣µ∣−1 ∫
B1/2

∣y∣−n+2 eλ
2
∣µ∣−

1
2 y1 dy ≤ c8∣η∣−1

in the case n > 2, and

∫
Bδ

∣Γ η,λ
H (y)∣dy ≤ c9∫

Bδ

∣log(∣µ∣
1
2 ∣y∣)∣ eλ

2
y1 dy

≤ c10∣µ∣−1 ∫
B1/2

∣log(∣y∣)∣ eλ
2
∣µ∣−

1
2 y1 dy ≤ c11∣η∣−1
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in the case n = 2, where we used ∣λ∣/2 ≤ ∣µ∣
1
2 in both cases. Collecting

these estimates, we conclude

∣DαI1(x)∣ ≤ c12∣η∣−1R1−n−∣α∣.

Now let us turn to I2. As above, Lemma A.2.1 implies I2 ∈ C∞(Rn∖{0})∩
Wk,1

loc(Rn) for all k ∈ N0. In order to estimate DαI2, we utilize (5.20) and
Lemma 5.1.2 again. Since ∣y∣ ≥ 3R ≥ 3ε/2 implies ∣µ∣

1
2 ∣y∣ ≥ 3η0ε/2, we can

employ estimate (5.15) with m = 0, which directly yields

∣DαI2(x)∣ ≤ c13 ∫
B3R

∣∂jDαΓL(x − y)∣ ∣Γ η,λ
H (y)∣dy

≤ c14 ∫
B3R

∣x − y∣1−n−∣α∣ ∣η∣−1 ∣y∣−n dy

≤ c15 ∣η∣−1R1−n−∣α∣.

Furthermore, from the decay estimate of Γ η,λ
H from (5.15) we conclude

I3 ∈ C∞(Rn ∖{0})∩Wk,1
loc(Rn) for all k ∈ N0 by Lemma A.2.1, and we have

DαI3(x) = ∫
B4R∖BR/2

∂jΓL(x − y)Dα[Γ η,λ
H χR](y)dy.

Since ∣y∣ ≥ R/2 ≥ ε/4 implies ∣µ∣
1
2 ∣y∣ ≥ η

1
2
0 ε/4, inequality (5.15) and the

Leibniz rule lead to the estimate

∣DαI3(x)∣ ≤ c16 ∫
B4R∖BR/2

∣x − y∣1−n
∣α∣

∑
k=0
∣η∣−1 ∣y∣−n−kR−(∣α∣−k) dy

≤ c17∣η∣−1R−n−∣α∣ ∫
B6R(x)

∣x − y∣1−n dy ≤ c18 ∣η∣−1R1−n−∣α∣.

In total, we have shown ΓL∗Γ η,λ
H ∈ C∞(Rn∖{0})∩Wk,1

loc(Rn) for all k ∈ N0,
and since ∣x∣ = 2R, we finally conclude (5.22) with β = α + ej by collecting
the estimates for DαI1, DαI2 and DαI3.

5.1.4 The Three-Dimensional Case
One of the main goals in Chapter 6 is to derive spatial decay estimates
for the solution to the Navier–Stokes equations. These estimates mainly
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rely on a representation of the solution via the fundamental solution. For
the derivation of pointwise information, we need pointwise properties of
the fundamental solution. We restrict ourselves to the Oseen case λ ≠ 0
in the following. Then the steady-state velocity fundamental solution is
given by the three-dimensional Oseen fundamental solution Γ λ

0 = ΓO. The
function Ψλ

0 in formula (5.9) can then be simplified since the associated
modified Bessel function K1/2 is given by

K1/2(z) =
√

π

2z
e−z .

We thus obtain

Γ λ
0,j`(x) =

1

4πλ
[δj`∆ − ∂j∂`]

s(λx)/2

∫
0

1 − e−τ
τ

dτ, (5.24)

where
s(x) ∶= ∣x∣ + x1.

One can derive the following estimates.

Theorem 5.1.6. Let n = 3 and λ ∈ R ∖ {0}. For all m ∈ N0 and ε > 0
there exists a constant C50 > 0 such that

∀∣x∣ ≥ ε ∶ ∣∇mΓ λ
0 (x)∣ ≤ C50[∣x∣(1 + s(λx))]

−1−m
2 . (5.25)

Proof. We refer to [26, Lemma 3.2].

Observe that the appearance of the term s(λx) in (5.24) and (5.25)
results in an anisotropic behavior of Γ λ

0 (x) as ∣x∣ → ∞. More precisely, if
we consider λ = 1 for the moment, in all directions except of the negative
x1 axis, that is, on sets of the form

{x ∈ Rn ∣ x1 = α∣x∣} = {x ∈ Rn ∣ s(x) = (1 + α)∣x∣}, α ∈ (−1,1],

the fundamental solution Γ λ
0 decays like ∣x∣−2. However, the above estimate

merely yields decay of order ∣x∣−1 on parabola-like wake regions of the form

{x ∈ Rn ∣ ∣x∣2 − x21 + 2βx1 ≤ β2} = {x ∈ Rn ∣ s(x) ≤ β}, β > 0.

As mentioned before, the strength of a fundamental solution is that
it yields a solution formula via convolution. In order to exploit the full
potential of the anisotropic decay properties of Γ λ

0 from Theorem 5.1.6,
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one thus has to control convolutions with functions satisfying similar esti-
mates. The careful study of such kind of convolutions is an involved task,
which was carried out by Farwig [26, 27] in dimension n = 3, and later by
Kračmar, Novotný and Pokorný [71] in the general n-dimensional
case. We collect some of their results in the following theorem, which gives
estimates of convolutions with Γ λ

0 and ∇Γ λ
0 .

Theorem 5.1.7. Let n = 3, A ∈ [2,∞) and B ∈ [0,∞), and let g ∈ L∞(R3)
such that g(x) ≤ M(1 + ∣x∣)−A(1 + s(x))−B. Then there exists a constant
C51 = C51(A,B,λ) > 0 with the following properties:

1. If A +min{1,B} > 3, then

∣∣Γ λ
0 ∣ ∗ g(x)∣ ≤ C51M[(1 + ∣x∣)(1 + s(λx))]

−1
.

2. If A +min{1,B} > 3 and A +B ≥ 7/2, then

∣∣∇Γ λ
0 ∣ ∗ g(x)∣ ≤ C51M[(1 + ∣x∣)(1 + s(λx))]

−3/2
.

3. If A +B < 3, then

∣∣∇Γ λ
0 ∣ ∗ g(x)∣ ≤ C51M(1 + ∣x∣)−(A+B)/2(1 + s(λx))

−(A+B−1)/2
.

Proof. These are special cases of [71, Theorems 3.1 and 3.2].

One can also show the following integrability properties of Γ λ
0 .

Theorem 5.1.8. Let n = 3 and λ ∈ R ∖ {0}. Then

∀q ∈ [1,3) ∶ Γ λ
0 ∈ Lq

loc(R3)3×3, (5.26)
∀q ∈ (2,∞) ∶ Γ λ

0 ∈ Lq(BR)3×3, (5.27)
∀q ∈ [1,3/2) ∶ ∂jΓ

λ
0 ∈ Lq

loc(R3)3×3, (5.28)
∀q ∈ (4/3,∞) ∶ ∂jΓ

λ
0 ∈ Lq(BR)3×3 (5.29)

for any R > 0 and j = 1,2,3.

Proof. Properties (5.26) and (5.28) follow from the estimates ∣Γ λ
0 (x)∣ ≤

c0∣x∣−1 and ∣∇Γ λ
0 (x)∣ ≤ c1∣x∣

−2 for 0 < ∣x∣ ≤ ε (see [26, Lemma 3.2]), and from
(5.25). For (5.27) and (5.29) we refer to [42, (VII.3.28) and (VII.3.33)].
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Similarly to the steady-state Oseen fundamental solution Γ λ
0 considered

above, the fundamental solution Γ η,λ
H to the Helmholtz equation with drift

term, defined in (5.12), can be simplified in the case of dimension n = 3.
Because the Hankel function H

(1)
ν for ν = 1

2 is given by

H
(1)
1/2(z) = −i

√
2

πz
eiz,

we have

Γ η,λ
H ∶R3 ∖ {0} → C, Γ η,λ

H (x) =
1

4π∣x∣ e
i
√−µ∣x∣−λ

2
x1 (5.30)

with µ = (λ/2)2 + iη as above. The following global pointwise estimates
are now a direct consequence of Lemma 5.1.1.

Lemma 5.1.9. Let n = 3, η0 > 0 and λ ∈ R. Then

∣Γ η,λ
H (x)∣ ≤ C52∣x∣−1 e−C45∣η∣

1
2 ∣x∣, (5.31)

∣∇Γ η,λ
H (x)∣ ≤ C52(∣x∣−2 + ∣η∣

1
2 ∣x∣−1) e−C45∣η∣

1
2 ∣x∣, (5.32)

for all η ∈ R with ∣η∣ > η0 and x ∈ R3 ∖ {0}. Here, C45 is the constant from
Lemma 5.1.1, and C52 = C52(λ, η0) > 0.

Proof. By Lemma 5.1.1 we have

∣ei
√−µ∣x∣−λ

2
x1 ∣ ≤ e− Im(

√−µ)∣x∣+ ∣λ∣
2
∣x∣ ≤ e−C45∣η∣

1
2 ∣x∣ .

Therefore, we directly conclude (5.31) from (5.30). Computing derivatives
of (5.30) and employing this estimate again, we further deduce

∣∇Γ η,λ
H (x)∣ ≤ c0(∣x∣

−2 + ∣x∣−1(∣√−µ∣ + ∣λ∣)) e−C45∣η∣
1
2 ∣x∣,

which implies (5.32) by using ∣λ∣ ≤ 2∣√−µ∣ ≤ c1∣η∣
1
2 for ∣η∣ ≥ η0.

5.2 Time-Periodic Fundamental Solutions
As mentioned before, the idea to use the concept of time-periodic fun-
damental solutions in the framework of the Navier–Stokes equations is
quite new and goes back to [76, 21]. Since a time-periodic problem in the
n-dimensional whole space Rn can be seen as a problem on the locally
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compact abelian group G = T × Rn, where a convolution is available, it
seems natural to search for a solution formula analogue to (5.3) or (5.5)
and thus for a fundamental solution in the time-periodic setting. The in-
troduction of such a time-periodic fundamental solution to the linearized
Navier–Stokes equations

{
∂tu −∆u − λ∂1u +∇p = f in T ×Rn,

divu = 0 in T ×Rn (5.33)

is the first goal of this chapter. Again we let λ ∈ R, that is, we consider
both the Stokes case (λ = 0) and the Oseen case (λ ≠ 0) simultaneously.
For the rest of this chapter, the time period T > 0 defining the considered
torus group T = R/T Z remains fixed.

As in the steady-state case, the fundamental solution will be a tensor-
valued distribution that decomposes into a velocity fundamental solution
and a pressure fundamental solution. While the pressure fundamental
solution will more or less be given as in the steady-state case (defined in
(5.10)), the velocity fundamental solution will decompose into two parts:
A steady-state part that coincides with the velocity fundamental solution
of the steady-state problem (5.4), and a second purely periodic part, which
will be defined by means of the Fourier transform on the group G = T×Rn.
After having found suitable representation formulas for the time-periodic
fundamental solutions, we further analyze their purely periodic parts and
show how they provide a priori estimates. At the end of the section, we
have a closer look at the three-dimensional case.

5.2.1 The Time-Periodic Stokes and Oseen
Fundamental Solutions

In the following, we introduce a time-periodic fundamental solution to the
linearized Navier–Stokes equations (5.33). By analogy to (5.6) and (5.7),
a fundamental solution Φ to (5.33) is a tensor field

Φ ∶=
⎛
⎜⎜⎜
⎝

Γ λ
11 . . . Γ λ

1n

⋮ ⋱ ⋮
Γ λ
n1 . . . Γ λ

nn

γ1 . . . γn

⎞
⎟⎟⎟
⎠
∈S ′(G)(n+1)×n (5.34)

that satisfies

{
∂tΓ

λ
j` −∆Γ λ

j` − λ∂1Γ λ
j` + ∂jγ` = δj`δG,
∂hΓ

λ
h` = 0

(5.35)
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in the sense of S ′(G) distributions for j, ` = 1, . . . , n. A solution to the
time-periodic system (5.33) is then given by

(u
p
) ∶= Φ ∗ f (5.36)

provided f ∈ S (G), where the componentwise convolution is taken over
the group G. As in the stationary case considered in Section 5.1, the
fundamental solution Φ consists of two parts: The velocity fundamental
solution Γ λ = (Γ λ

j`)nj,`=1S ′(G)n×n and the pressure fundamental solution
γ = (γ`)n`=1 ∈S ′(G)n such that

u = Γ λ ∗ f, p = γ ∗ f.

In the following, we shall identify a fundamental solution Φ to (5.33)
as the sum of a fundamental solution to the corresponding steady-state
system (5.4) and a second purely periodic fundamental solution, which we
introduce by means of the Fourier transform FG on the group G = T×Rn.
More specifically, this fundamental solution is given as the inverse Fourier
transform of a function on Ĝ = Z × Rn. Recall the definition of Γ S, ΓO

and γ0 from (5.8), (5.9) and (5.10), respectively.

Theorem 5.2.1. Let n ≥ 2 and λ ∈ R. Put

Γ λ
0 ∶= {

Γ S if λ = 0 (Stokes case),
ΓO if λ ≠ 0 (Oseen case).

Then the elements of S ′(G) given by

Γ λ ∶= Γ λ
0 ⊗ 1T + Γ λ

⊥ , (5.37)
γ ∶= γ0 ⊗ δT, (5.38)

with

Γ λ
⊥ ∶=F −1

G [
1 − δZ(k)

∣ξ∣2 + i(2πT k − λξ1)
(I − ξ ⊗ ξ

∣ξ∣2
)] ∈S ′(G)n×n (5.39)

define a fundamental solution Φ ∈ S ′(G)(n+1)×n to (5.35) of the form
(5.34).

Proof. At first, note that the function

M ∶ Ĝ→ C, M(k, ξ) ∶= 1 − δZ(k)
∣ξ∣2 + i(2πT k − λξ1)

(5.40)
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is an element of L∞(Ĝ). Therefore, Γ λ
⊥ is a well-defined tempered distri-

bution in S ′(G)n×n. Due to the identity FRn[γ0] = −i ξ

∣ξ∣2 , we obtain

FG[∇γ] =FRn[∇γ0] ⊗FT[δT] =
ξ ⊗ ξ
∣ξ∣2
⋅ 1Z.

By (5.7) we also have

(∣ξ∣2− iλξ1)FRn[Γ λ
0 ] =FRn[[−∆−λ∂1]Γ λ

0 ] =FRn[δRn −∇γ0] = (I −
ξ ⊗ ξ
∣ξ∣2
).

Since kF [1T](k) = kδZ(k) = 0, we deduce

(∣ξ∣2 + i2πT k − iλξ1)FG[Γ λ
0 ⊗ 1T] = (I −

ξ ⊗ ξ
∣ξ∣2
)δZ(k).

This finally leads us to

(∣ξ∣2 + i2πT k − iλξ1)FG[Γ λ] +FG[∇γ] = I.

An application of inverse Fourier transform to this equality and the fact
that divΓ λ

0 = divΓ λ
⊥ = 0 let us conclude that (Γ λ, γ) is a fundamental

solution to (5.35).

5.2.2 Pointwise Estimates and Integrability
Since properties of the steady-state fundamental solution Φ0 = (Γ λ

0 , γ0)
are well known (see Section 5.1), the analysis of the fundamental so-
lution Φ = (Γ λ, γ) from Theorem 5.2.1 reduces to the investigation of
the purely periodic part Γ λ

⊥ of the velocity fundamental solution given in
(5.39). Therefore, we establish decay estimates and integrability proper-
ties of Γ λ

⊥ in the following. These results are new and were published in
[21].

Let us begin with the spatial decay estimate of the fundamental solution.
The idea is to express Γ λ

⊥ as a Fourier series on T and to identify the Fourier
coefficients as convolutions in Rn of the type studied in Lemma 5.1.5.

Theorem 5.2.2. Let n ≥ 2, λ ∈ R and r ∈ [1,∞). For all m ∈ N0 and
ε > 0, there exists a constant C53(n,λ, r,m, ε) > 0 such that

∀∣x∣ ≥ ε ∶ ∥∇mΓ λ
⊥ (⋅, x)∥Lr(T) ≤ C53∣x∣−n−m. (5.41)
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Proof. Recall ΓL defined in (5.2) and Γ
2π
T k,λ

H defined in (5.12) (with η =
2π
T k). Since ∂j∂`[ΓL ∗ Γ

2π
T k,λ

H ] is locally integrable by Lemma 5.1.5 and
satisfies the decay estimate (5.22), it is a tempered distribution on Rn.
Therefore, we may apply the Fourier transform to this distribution. Then
identity (5.19) yields

FRn[∂j∂`[ΓL ∗ Γ
2π
T k,λ

H ]](ξ) = ξjξ`
∣ξ∣2

1

∣ξ∣2 + i(2πT k − λξ1)
and, in particular,

FRn[∆[ΓL ∗ Γ
2π
T k,λ

H ]](ξ) = 1

∣ξ∣2 + i(2πT k − λξ1)
.

Hence the definition of Γ λ
⊥ in (5.39) yields

DαΓ λ
⊥,j` =F −1

T [(1 − δZ(k))[δj`∆ − ∂j∂`]Dα[ΓL ∗ Γ
2π
T k,λ

H ]]. (5.42)
This representation allows us to derive (5.41) from Lemma 5.1.5. Clearly,
since T is a finite measure space, it suffices to consider r ∈ [2,∞). Then the
Hölder conjugate r′ = r/(r−1) satisfies r′ ≤ 2. Hence the Hausdorff–Young
inequality in combination with estimate (5.22) yields

∥DαΓ λ
⊥,j`(⋅, x)∥Lr(T)

≤ (∑
k∈Z
∣(1 − δZ(k))[δj`∆ − ∂j∂`]Dα[ΓL ∗ Γ

2π
T k,λ

H ](x)∣
r′

)
1
r′

≤ c0∣x∣−n−∣α∣( ∑
k∈Z∖{0}

∣k∣−r
′
)

1
r′

.

Since r′ > 1, the remaining series converges and we arrive at (5.41).

Next, we derive integrability properties of the purely periodic fundamen-
tal solution Γ λ

⊥ . For this, we express it as a Fourier multiplier operator
applied to a function in an appropriate Lq space. In order to show that
these multipliers are in fact Lq(G) multipliers, we employ the Transference
Principle (Theorem 2.2.2) to connect them to the multipliers considered
in Lemma A.3.7 in the Euclidean setting.
Theorem 5.2.3. Let n ≥ 2 and λ ∈ R. Then

∀q ∈ (1, n + 2
n
) ∶ Γ λ

⊥ ∈ Lq(G)n×n, (5.43)

∀q ∈ [1, n + 2
n + 1) ∶ ∂jΓ

λ
⊥ ∈ Lq(G)n×n (j = 1, . . . , n). (5.44)
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Proof. We start with the derivation of (5.43). A reformulation of equation
(5.39) leads to the representation

Γ λ
⊥,j` =F −1

G [(δj`
ξmξm

∣ξ∣2
− ξjξ`
∣ξ∣2
) 1 − δZ(k)
∣ξ∣2 + i(2πT k − λξ1)

]

= [ − δj`(RmRm) +RjR`] ○F −1
G [M0 FG[F −1

G (K)]],

where Rj denotes the Riesz transform (compare (A.81)), and we have set

M0∶ Ĝ→ C, M0(k, ξ) ∶=
(1 − δZ(k))∣k∣

2
n+2 (1 + ∣ξ∣2) n

n+2

∣ξ∣2 + i(2πT k − λξ1)
(5.45)

and

K∶ Ĝ→ C, K(k, ξ) ∶= (1 − δZ(k))∣k∣−
2

n+2 (1 + ∣ξ∣2)− n
n+2 . (5.46)

By Proposition A.3.4, we have Rj ∈ L(Lr(G)) for all r ∈ (1,∞). Moreover,
we obtain M0 = m0∣Z×Rn with m0 defined in (A.83), where θ = 2

n+2 . Since
m0 is a continuous Lr(R×Rn) multiplier by Lemma A.3.7, an application
of the Transference Principle (Theorem 2.2.2) implies that M0 is an Lr(G)
multiplier for all r ∈ (1,∞). Hence we conclude Γ λ

⊥ ∈ Lq(G) if F −1
G (K) ∈

Lq(G). Since we have F −1
G (K) = ϕα ⊗ ψβ with α = 2

n+2 and β = 2n
n+2 , and

ϕα and ψβ defined in (A.78) and (A.79), respectively, Proposition A.3.1
and Proposition A.3.2 imply F −1

G (K) ∈ Lr(G) for all r ∈ (1, n+2n ), and we
have verified (5.43).

In order to show (5.44), we proceed in a similar way. As above, we
obtain the identity

∂hΓ
λ
⊥,j` = [ − δj`(RmRm) +RjR`] ○F −1

G [Mh FG[F −1
G (J )]]

for h = 1, . . . , n, where

Mh∶ Ĝ→ C, Mh(k, ξ) ∶=
(1 − δZ(k))∣k∣

1
n+2 (1 + ∣ξ∣2)

n
2(n+2) iξh

∣ξ∣2 + i(2πT k − λξ1)
(5.47)

and

J ∶ Ĝ→ C, J (k, ξ) ∶= (1 − δZ(k))∣k∣−
1

n+2 (1 + ∣ξ∣2)−
n

2(n+2) . (5.48)
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Then we have Mh = mh∣Z×Rn with mh defined in (A.84), where θ = 1
n+2 .

Using the Transference Principle (Theorem 2.2.2) and Lemma A.3.7 again,
we conclude that Mh is an Lr(G) multiplier for all r ∈ (1,∞). Moreover,
we see F −1

G [J ] = ϕα ⊗ ψβ with α = 1
n+2 and β = n

n+2 . Arguing as above,
we conclude F −1

G [J ] ∈ Lq(G) and thus ∂hΓ λ
⊥ ∈ Lq(G) for all q ∈ (1, n+2n+1).

In particular, this yields ∂hΓ λ
⊥ ∈ L1

loc(G). Together with the asymptotic
behavior from (5.41) for m = 1, this leads to ∂hΓ λ

⊥ ∈ L1(G). In total, we
have thus also shown (5.44) and completed the proof.

5.2.3 A priori Estimates
In the following, we demonstrate how to employ the fundamental solution
in order to derive Lq estimates. We further derive unique existence of a
solution to (5.33) in the associated functional framework. For the deduc-
tion of a priori estimates, we employ the Transference Principle (Theorem
2.2.2), which leads to the following result.

Lemma 5.2.4. If f ∈ S (G)n and q ∈ (1,∞), then Γ λ
⊥ ∗ f ∈ W1,2,q

� (G)n
and there exists a polynomial P ∶R → R, which only depends on n and q,
such that

∥∂t(Γ λ
⊥ ∗ f)∥q + ∥∇2(Γ λ

⊥ ∗ f)∥q ≤ P (λ2T )∥f∥q. (5.49)

Proof. By the definition of Γ λ
⊥ in (5.39), the convolution Γ λ

⊥ ∗ f can be
expressed in terms of a Fourier multiplier

(Γ λ
⊥ ∗ f)j =F −1

G [M(k, ξ)(δj` −
ξjξ`

∣ξ∣2
)FG[f`]]

= [ − δj`(RmRm) +RjRl] ○F −1
G [MFG[f`]],

with M given by (5.40). The property M(0, ξ) = 0 leads to the identity
P(Γ λ

⊥ ∗ f) = F −1
G [δZFG[Γ λ

⊥ ∗ f]] = 0. Next let us show that Γ λ
⊥ ∗ f ∈

W1,2,q(T ×Rn). We have

∂r∂s(Γ λ
⊥ ∗ f)j = [ − δjl(RhRh) +RjRl] ○RrRs ○F −1

G [Mx FG[f`]],
∂t(Γ λ

⊥ ∗ f)j = [ − δj`(RmRm) +RjRl] ○RT ○F −1
G [Mt FG[f`]]

for r, s = 1, . . . , n, where

Mx(k, ξ) = ∣ξ∣2M(k, ξ), Mt(k, ξ) = −
2π

T kM(k, ξ)
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and Rj and RT denote Riesz transforms defined in (A.81) and (2.2), re-
spectively. Let κ = 2π

T . Then we have Mx = m̃κ,λ∣Z×Rn for θ = 0 and
Mt = −m̃κ,λ∣Z×Rn for θ = 1 with m̃κ,λ defined in (A.87). By the Transfer-
ence Principle (Theorem 2.2.2) and Lemma A.3.10, we thus conclude that
Mx and Mt are Lq(G) multipliers for any q ∈ (1,∞). Together with the
continuity of the Riesz transforms by Proposition A.3.4 and Proposition
2.2.4, this implies ∂r∂s(Γ λ

⊥ ∗f), ∂t(Γ λ
⊥ ∗f) ∈ Lq(G) and the estimate (5.49)

due to estimate (A.90). By P(Γ λ
⊥ ∗ f) = 0 and Poincaré’s inequality, this

further yields Γ λ
⊥ ∗ f ∈ Lq(G) and consequently Γ λ

⊥ ∗ f ∈W1,2,q
� (G).

In order to show that Γ λ
⊥ ∗ f is the unique solution to (5.33) for purely

periodic f , we utilize the following uniqueness statement, which is proved
by an application of the Fourier transform on G.

Lemma 5.2.5. Let (u,p) ∈S ′(G)n+1 be a solution to (5.33) for the right-
hand side f = 0. Then, Pu is a polynomial in each component, P�u = 0,
and p ∈ L1

loc(G) such that p(t, ⋅) is a polynomial for almost each t ∈ T.

Proof. An application of the Fourier transform on G to (5.33)1 yields

(i2πT k + ∣ξ∣
2 − iλξ1)û + iξp̂ = 0

with û ∶= FG[u] and p̂ ∶= FG[p]. Multiplying this equation with iξ and
using divu = 0, we obtain −∣ξ∣2p̂ = 0, so that supp p̂ ⊂ Z × {0}. Then, the
above equation yields

supp [(i2πT k + ∣ξ∣
2 − iλξ1)û] = supp [ − iξp̂] ⊂ Z × {0}.

Because the only zero of (k, ξ) ↦ (i2πT k + ∣ξ∣
2 − iλξ1) is (k, ξ) = (0,0), we

conclude supp û ⊂ {(0,0)}. Thus we obtain P�u = 0 and that Pu is a
polynomial in each component. Now (5.33)1 leads to p ∈ L1

loc(G). As
above, this implies suppFRn[p(t, ⋅)] ⊂ {0}, so that p(t, ⋅) is a polynomial
for almost all t ∈ T.

Now we show existence of a unique solution to (5.33) when the right-
hand side f ∈ Lq(G)n is purely periodic. We first obtain a solution for
f ∈ S (G)n by means of the fundamental solution. Due to the a pri-
ori estimate from Lemma 5.2.4, we can then employ a standard density
argument to extend this to general f ∈ Lq(G)n with Pf = 0.
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Theorem 5.2.6. Let q ∈ (1,∞), λ ∈ R and f ∈ Lq
�(G). Then there exists

a solution (u,p) to (5.33) such that u ∈ W1,2,q
� (G)3, ∇p ∈ Lq

�(G), which
satisfies

∥∂tu∥q + ∥∇2u∥q + ∥λ∂1u∥q + ∥∇p∥q ≤ P (λ2T )∥f∥q, (5.50)
∥u∥1,2,q + ∥∇p∥q ≤ C54∥f∥q (5.51)

for a polynomial P ∶R → R, which only depends on n and q, and some
constant C54 = C54(n, q, λ,T ) > 0. If (u1,p1) ∈S ′(G)3×S ′(G) is another
solution to (5.33) with Pu1 = 0, then u = u1 and ∇p = ∇p1.

Proof. This theorem was originally proved in [74]. We give a slightly
different proof here. At first, consider f ∈S (G)n with Pf = 0, and define
u ∶= Γ λ ∗f as well as p ∶= γ ∗f , where Γ λ and γ were defined in (5.37) and
(5.38). Then (u,p) is a solution to (5.33) due to Theorem 5.2.1. Since
Pf = 0, we conclude (Γ λ

0 ⊗1)∗f = 0, so that u = Γ λ
⊥ ∗f and u ∈W1,2,q

� (G)n
by Lemma 5.2.4. The identity

∂jp =F −1
G [(FRn[∂jγ0,`]⊗FT[δZ])FG[f`]] =F −1

G [
ξjξ`

∣ξ∣2
FG[f`]] = −RjR`f`

implies ∇p ∈ Lq(G)n by Proposition A.3.4 and ∥∇p∥q ≤ c0∥f∥q, where c0
is independent of λ and T . Due to this estimate, (5.49) and the identity
λ∂1u = ∂tu − ∆u + ∇p − f , we now conclude (5.50). Since Pu = 0, we
further conclude (5.51) by Poincaré’s inequality. Moreover, Pu = 0 implies
P∇p = 0, so that (u,p) is a solution with the desired properties.

Now let f ∈ Lq
�(G)n. Then there exists a sequence (fj) ⊂ S (G)n with

Pfj = 0 that converges to f in Lq(G)n. By the above argument, for each
j ∈ N there exists a solution (uj,pj) with uj ∈W1,2,q

� (G)n and ∇pj ∈ Lq
�(G)n

to (5.33) with right-hand side fj, and satisfying (5.50) and (5.51). Since
(fj) is a Cauchy sequence in Lq(G)n, estimate (5.51) implies that (uj)
and (∇pj) are Cauchy sequences in W1,2,q

� (G) and Lq
�(G) and therefore

possess limits u and ∇p in the respective spaces. Then (u,p) is a solution
to (5.33) with right-hand side f that satisfies (5.50) and (5.51).

For the uniqueness statement, it suffices to consider a solution (u,p)
to (5.33) for right-hand side f = 0 such that Pu = 0. Then Lemma 5.2.5
implies u = P�u = 0, and from (5.33)1 we conclude ∇p = 0. This shows the
uniqueness statement.

Remark 5.2.7. Note that Theorem 5.2.6 coincides with Theorem 3.2.1 in
the case of the whole space Ω = Rn. Moreover, Theorem 5.2.6 can be used

126



5.2 Time-Periodic Fundamental Solutions

as the starting point of a proof of Theorem 3.2.1, where Ω ⊂ Rn is an
exterior domain, by means of a localization procedure. This approach was
carried out in [50] to prove Theorem 3.2.1 in the case n = 3.

As we have seen in Subsection 3.2.2, Theorem 5.2.6 can be combined
with a well-posedness result for the steady-state Stokes or Oseen problem
(5.4) in order to omit the condition Pf = 0. In this way, one can show
existence of a time-periodic solution for general time-periodic right-hand
sides f ∈ Lq(T ×Rn) together with an a priori estimate.

5.2.4 The Three-Dimensional Case
Again, in view of our later application to the time-periodic Navier–Stokes
equations in three dimensions, let us single out the case n = 3 in the
following. In order to derive pointwise decay estimates of the velocity
field, we shall represent it via a convolution with integral kernel Γ λ, the
time-periodic velocity fundamental solution. Due to the representation
(5.37) of Γ λ, this convolution is the sum of a convolution with the steady-
state part Γ λ

0 and a convolution with the purely periodic part Γ λ
⊥ . While

convolutions of the former type were subject of Theorem 5.1.7, here we
investigate convolutions with Γ λ

⊥ .
Theorem 5.2.8. Let n = 3 and A ∈ (0,∞) with A ≠ 3. Let g ∈ L∞(T×R3)
such that g(t, x) ≤ M(1 + ∣x∣)−A, and let ε > 0. Then for any δ > 0 there
exists a constant C55 = C55(A,λ,T , ε, δ) > 0 such that

∀∣x∣ ≥ ε ∶ ∣∣Γ λ
⊥ ∣ ∗G g(t, x)∣ ≤ C55M

⎧⎪⎪⎨⎪⎪⎩

(1 + ∣x∣)−3 if A > 3,
(1 + ∣x∣)−A+δ if A < 3,

(5.52)

∀∣x∣ ≥ ε ∶ ∣∣∇Γ λ
⊥ ∣ ∗G g(t, x)∣ ≤ C55M(1 + ∣x∣)−min{A,4}. (5.53)

Proof. Let x ∈ R3, ∣x∣ ≥ ε and set R ∶= ∣x∣/2. Using the estimate for g, we
have

∣∣Γ λ
⊥ ∣ ∗G g(t, x)∣ ≤M(I1 + I2 + I3)

where

I1 = ∫
BR

∫
T

∣Γ λ
⊥ (t − s, x − y)∣ (1 + ∣y∣)−A dyds,

I2 = ∫
B4R∖BR

∫
T

∣Γ λ
⊥ (t − s, x − y)∣ (1 + ∣y∣)−A dyds,

I3 = ∫
B4R

∫
T

∣Γ λ
⊥ (t − s, x − y)∣ (1 + ∣y∣)−A dyds.
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We estimate these terms separately. Since ∣y∣ ≤ R implies ∣x − y∣ ≥ ∣x∣− ∣y∣ ≥
∣x∣/2 = R ≥ ε/2, we can use (5.41) to estimate

I1 ≤ c0∫
BR

∣x − y∣−3(1 + ∣y∣)−A dy ≤ c1∣x∣−3∫
R3

(1 + ∣y∣)−A dy ≤ c2∣x∣−3

if A > 3, and

I1 ≤ c3∫
BR

∣x − y∣−3(1 + ∣y∣)−A dy ≤ c4∣x∣−3∫
BR

∣y∣−A dy ≤ c5∣x∣−A

if A < 3. To estimate I2, we employ Hölder’s inequality with q ∈ (1, 53) and
q′ = q/(q − 1), which yields

I2 ≤ ∣x∣−A(∫
T

∫
B4R∖BR

1dyds)
1/q′

(∫
T

∫
B4R∖BR

∣Γ λ
⊥ (t − s, x − y)∣

q
dyds)

1/q

≤ c6∣x∣−A∣x∣3−
3
q ∥Γ λ

⊥ ∥Lq(T×R3).

If A > 3, we choose q ∈ (1, 53) so small that −A + 3 − 3
q < −3. If A < 3,

we choose q ∈ (1, 53) so small that −A + 3 − 3
q < −A + δ. In virtue of

Γ λ
⊥ ∈ Lq(T ×Rn) (by (5.43)), this implies

I2 ≤ c7
⎧⎪⎪⎨⎪⎪⎩

∣x∣−3 if A > 3,
∣x∣−A+δ if A < 3.

For I3 we note that ∣y∣ ≥ 4R implies ∣x − y∣ ≥ ∣y∣ − ∣x∣ ≥ ∣y∣ − ∣y∣/2 = ∣y∣/2 ≥
2R ≥ ε. Therefore, (5.41) yields

I3 ≤ c8 ∫
B4R

∣x − y∣−3(1 + ∣y∣)−A dy ≤ c9 ∫
B4R

∣y∣−3∣y∣−A dy ≤ c10∣x∣−A.

Collecting the estimates of I1, I2 and I3, we obtain (5.52).
A proof of (5.53) can be given in a similar but simpler way. For the

sake of completeness, we sketch it here. We have

∣∣∇Γ λ
⊥ ∣ ∗G g(t, x)∣ ≤M(J1 + J2)

where

J1 = ∫
BR

∫
T

∣∇Γ λ
⊥ (t − s, x − y)∣ (1 + ∣y∣)−A dsdy,

J2 = ∫
BR

∫
T

∣∇Γ λ
⊥ (t − s, x − y)∣ (1 + ∣y∣)−A dsdy.
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Employing (5.41), we estimate

J1 ≤ c11∫
BR

∣x − y∣−4(1 + ∣y∣)−A dy ≤ c12∣x∣−4∫
BR

(1 + ∣y∣)−A dy.

With the same argument as above, this yields

J1 ≤ c13
⎧⎪⎪⎨⎪⎪⎩

∣x∣−4 if A > 3,
∣x∣−A−1 if A < 3.

Since ∇Γ λ
⊥ ∈ L1(T ×R3) by (5.44), we further obtain

J2 ≤ c14∣x∣−A∥∇Γ λ
⊥ ∥L1(T×R3) ≤ c15∣x∣−A

Collecting the estimates of J1 and J2, we conclude (5.53).

Note that in the case A = 3 it is possible to derive an estimate that
contains logarithmic terms. Since we shall not need this case, we excluded
it here for the sake of simplicity.

Furthermore, in the case A < 3 the convolution ∣Γ λ
⊥ ∣ ∗ g shows a slightly

worse decay rate than the optimal one (1 + ∣x∣)−A. Comparing the proofs
of (5.52) and (5.53), one sees that this occurs since we do not have Γ λ

⊥ ∈
L1(T×Rn). However, even if one could improve this estimate and omit δ,
this would not affect the results for the Navier–Stokes equations derived
in Chapter 6.

5.3 The Vorticity Fundamental Solution
In Chaper 6, one of our goals is to analyze the asymptotic behavior of the
vorticity associated to the time-periodic flow around a body. As mentioned
beforehand, such estimates can be derived if an integral representation for
the vorticity is available. Therefore, our first task in this section shall be
to derive such a representation in terms of a fundamental solution. Again,
the corresponding integral kernel will consist of two parts: A first part
that is the vorticity fundamental solution to the corresponding steady-
state problem, and a second, purely periodic part. Afterwards, we derive
decay estimates and integrability properties of this fundamental solution.
Note that, in the whole section, we will only consider the case n = 3,
though, similar results can also be derived in the case of dimension n = 2.
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5.3.1 The Vorticity Fundamental Solution
Let (u,p) be a solution to the time-periodic problem (5.33) for a given
right-hand side f ∶T ×R3 → R3. In the following we focus on the velocity
field u, and we want to obtain an integral formula for the associated vortic-
ity curlu similar to the representation u = Γ λ∗f derived previously. Using
this formula, for m = 1,2,3 we formally obtain, using Einstein summation
convention,

(curlu)m = εmhj∂h(Γ λ
j` ∗ f`) = εmhj(∂hΓ λ

j`) ∗ f`.

In virtue of (5.24), (5.42) and (5.37), we can express Γ λ as

Γ λ
j` = [δj`∆ − ∂j∂`]Ψλ

with Ψλ = Ψλ
0 ⊗ 1T +Ψλ

⊥, where

Ψλ
0(x) =

1

4πλ

s(λx)/2

∫
0

1 − e−τ
τ

dτ,

Ψλ
⊥(t, x) =F −1

T [k ↦ (1 − δZ(k))[ΓL ∗ Γ
2π
T k,λ

H ](x)](t).

We thus conclude

(curlu)m = εmhj([δj`∂h∆ − ∂h∂j∂`]Ψλ) ∗ f` = εmh`∂h∆Ψλ ∗ f`.

Setting φλ ∶=∆Ψλ, we thus obtain the equation

curlu(t, x) = ∫
G

∇φλ(t − s, x − y) ∧ f(s, y)d(s, y). (5.54)

This is the desired integral representation formula for the vorticity curlu,
and we call φλ the vorticity fundamental solution. Note that this is a slight
abuse of notation because (5.54) is not a standard convolution with the
kernel φλ. Nevertheless, we continue to use this name in the following.
Moreover, using the identity

∣∇[s(λx)]∣2 = ∣ ∣λ∣x∣x∣ + λ e1 ∣
2

= 2∣λ∣2 + 2∣λ∣λx1
∣x∣ = 2∣λ∣s(λx)

∣x∣ , (5.55)

one shows by a direct computation that

φλ = φλ
0 ⊗ 1T + φλ

⊥ (5.56)
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5.3 The Vorticity Fundamental Solution

with

φλ
0(x) ∶=

sgn(λ)
4π∣x∣ e

−s(λx)/2, (5.57)

φλ
⊥(t, x) ∶=F −1

T [k ↦ (1 − δZ(k))Γ
2π
T k,λ

H (x)](t). (5.58)

By (5.19) we also have the identity

φλ
⊥ =F −1

G [
1 − δZ(k)

∣ξ∣2 − iλξ1 + i2πT k
]. (5.59)

Though the integral in (5.54) is not a classical convolution due to the
appearing vector product, estimates can be derived in the very same way.
In particular, spatial decay estimates of curlu given by (5.54) are available
if we have sufficient pointwise information on ∇φλ. These will be derived
in the following.

5.3.2 Pointwise Estimates and Integrability
After having introduced the vorticity fundamental solution φλ, we now
derive corresponding integrability properties and decay estimates similar
to those from Subsection 5.2.2. We begin with recalling the following
pointwise estimates of the steady-state vorticity fundamental solution φλ

0

defined in (5.57). The proof is a straightforward calculation.

Theorem 5.3.1. Let λ ∈ R ∖ {0}. There exists C56 = C56(λ) > 0 such
that for all x ∈ R3 ∖ {0} the steady-state vorticity fundamental solution φλ

0

satisfies

∣φλ
0(x)∣ ≤ C56∣x∣−1 e−s(λx)/2, (5.60)

∣∇φλ
0(x)∣ ≤ C56(∣x∣−2 + ∣x∣−3/2s(λx)1/2) e−s(λx)/2 . (5.61)

Proof. Estimate (5.60) is indeed trivial and follows directly from (5.57).
For estimate (5.61) we take derivatives in (5.57) and obtain

∣∇φλ
0(x)∣ ≤ c0(∣x∣

−2 + ∣x∣−1∣∇[s(λx)]∣) e− 1
2
s(λx) .

Now (5.61) follows from the identity (5.55) and the proof is complete.

Next we show analogous estimates of the purely periodic part φλ
⊥ defined

in (5.58). For this purpose, we first study the following Fourier multiplier.
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Let χ ∈ C∞(R), 0 ≤ χ ≤ 1, with χ(η) = 0 for ∣η∣ ≤ 1
2 and χ(η) = 1 for ∣η∣ ≥ 1.

For α ∈ N3
0 with ∣α∣ ≤ 1, γ ∈ (0,1) and x ∈ R3 ∖ {0} define the function

mα,x∶R→ R, mα,x(η) ∶= χ(η)∣η∣γDαΓ
2π
T η,λ

H (x), (5.62)

where Γ η,λ
H is defined in (5.30). Employing the pointwise estimates of Γ η,λ

H

established in Lemma 5.1.9, we show that mα,x is an Lq(R) multiplier.

Lemma 5.3.2. Let λ ∈ R and T > 0. Let α ∈ N3
0 with ∣α∣ ≤ 1, γ ∈ (0,1)

and x ∈ R3∖{0}. Then mα,x is an Lq(R) multiplier for any q ∈ (1,∞), and
there exist constants C57 = C57(λ,T , q, α, γ) > 0 and C58 = C58(λ,T ) > 0
such that

∥opR[mα,x]∥L(Lq(R)) ≤ C57∣x∣−1−∣α∣−2γ e−C58∣x∣ .

Proof. We show the statement by an application of the Marcinkiewicz
Multiplier Theorem (Theorem A.3.3). For this, we need to derive suitable
estimates of mα,x and η∂ηmα,x.

At first, let α = 0. From (5.31) we conclude

∣m0,x(η)∣ ≤ c0χ(η)∣η∣γ ∣x∣−1 e−C45∣ 2πT η∣
1
2 ∣x∣ ≤ c1∣x∣−1−2γ e−C45∣ 2πT η∣

1
2 ∣x∣/2

for ∣η∣ ≥ 1
2 . Moreover, differentiating Γ

2π
T η,λ

H with respect to η, we obtain

∣∂ηΓ
2π
T η,λ

H (x)∣ ≤ c2∣∂η
√−µ∣ ∣x∣ ∣Γ

2π
T η,λ

H (x)∣ ≤ c3∣η∣−
1
2 ∣x∣ ∣Γ

2π
T η,λ

H (x)∣,

so that (5.31) yields

∣η∂ηm0,x(η)∣

≤ ∣χ′(η)∣η∣γ+1Γ
2π
T η,λ

H (x)∣ + ∣χ(η)γ∣η∣γΓ
2π
T η,λ

H (x)∣ + ∣χ(η)∣η∣γ+1∂ηΓ
2π
T η,λ

H (x)∣

≤ c4(∣η∣γ ∣x∣−1 + ∣η∣γ+
1
2 ) e−C45∣ 2πT η∣

1
2 ∣x∣ ≤ c5∣x∣−1−2γ e−C45∣ 2πT η∣

1
2 ∣x∣/2

for ∣η∣ ≥ 1
2 . Collecting these estimates and utilizing m0,x(η) = 0 for ∣η∣ ≤ 1

2 ,
we have

∣m0,x(η)∣ + ∣η∂ηm0,x(η)∣ ≤ c6∣x∣−1−2γ e−C58∣x∣ (5.63)

with C58 =
√
π/T C45/2 for all η ∈ R.

Next consider the case ∣α∣ = 1, that is, α = ej for some j ∈ {1,2,3}. Then
(5.32) leads to

∣mα,x(η)∣ ≤ c7χ(η)∣η∣γ(∣x∣−2 + ∣η∣
1
2 ∣x∣−1) e−C45∣ 2πT η∣

1
2 ∣x∣

≤ c8∣x∣−2−2γ e−C45∣ 2πT η∣
1
2 ∣x∣/2

132



5.3 The Vorticity Fundamental Solution

for ∣η∣ ≥ 1
2 . Moreover, a straightforward calculation yields

∣∂η∂jΓ
2π
T η,λ

H (x)∣ ≤ c9(∣µ∣−
1
2 + ∣x∣)∣Γ

2π
T η,λ

H (x)∣ ≤ c10(∣η∣−
1
2 + ∣x∣)∣Γ

2π
T η,λ

H (x)∣,

so that we can employ Lemma 5.1.9 to estimate

∣η∂η∂jmα,x(η)∣ ≤ ∣χ′(η)∣η∣γ+1∂jΓ
2π
T η,λ

H (x)∣ + ∣χ(η)γ∣η∣γ∂jΓ
2π
T η,λ

H (x)∣

+ ∣χ(η)∣η∣γ+1∂η∂jΓ
2π
T η,λ

H (x)∣

≤ c11(∣η∣γ ∣x∣−2 + ∣η∣γ+
1
2 ∣x∣−1 + ∣η∣γ+1) e−C45∣ 2πT η∣

1
2 ∣x∣

≤ c12∣x∣−2−2γ e−C45∣ 2πT η∣
1
2 ∣x∣/2

for ∣η∣ ≥ 1
2 . Collecting these estimates and utilizing mα,x(η) = 0 for ∣η∣ ≤ 1

2 ,
we have

∣mα,x(η)∣ + ∣η∂ηmα,x(η)∣ ≤ c13∣x∣−2−2γ e−C58∣x∣ (5.64)

with C58 =
√
π/T C45/2 as above.

By the Marcinkiewicz Multiplier Theorem (Theorem A.3.3), the asser-
tion is a direct consequence of (5.63) and (5.64).

To establish pointwise estimates of φλ
⊥, we express it by means of a

Fourier multiplier that can be controlled with the previous lemma and the
Transference Principle (Theorem 2.2.2).

Theorem 5.3.3. For all γ ∈ (0,1), q ∈ [1, 1
1−γ ) and x ∈ R3 ∖ {0} the

time-periodic vorticity fundamental solution satisfies the estimates

∥φλ
⊥(⋅, x)∥Lq(T) ≤ C59∣x∣−(1+2γ) e−C58∣x∣, (5.65)

∥∇φλ
⊥(⋅, x)∥Lq(T) ≤ C59∣x∣−(2+2γ) e−C58∣x∣ (5.66)

for constants C59 = C59(λ,T , q, γ) > 0 and C58 = C58(λ,T ) > 0.

Proof. First of all, note that it suffices to consider the case q > 1 since T
is a finite measure space. We fix x ∈ R3, x ≠ 0. Due to formula (5.58), we
have

Dαφλ
⊥(⋅, x) =F −1

T [Mα,xFT[ϕγ]] (5.67)

with
Mα,x(k) ∶= (1 − δZ(k))∣k∣γDαΓ

2π
T k,λ

H (x)
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5 Time-Periodic Fundamental Solutions

and ϕγ = F −1
T [k ↦ (1 − δZ(k))∣k∣

−γ]. First, note that Mα,x = mα,x∣Z for
mα,x defined in (5.62). Since mα,x is continuous and an Lq(R) multiplier
by Lemma 5.3.2, the Tansference Principle (Theorem 2.2.2) implies that
Mα,x is an Lq(T) multiplier for any q ∈ (1,∞) and

∥opT[Mα,x]∥L(Lq(T)) ≤ c0∣x∣−1−∣α∣−2γ e−C58∣x∣ .

Moreover, Proposition A.3.1 yields ϕγ ∈ Lq(T) provided q < 1/(1 − γ).
Finally, representation formula (5.67) leads to

∥Dαφλ
⊥(⋅, x)∥Lq(T) ≤ ∥opT[Mα,x]∥L(Lq(T)) ∥ϕγ∥Lq(T) ≤ c1∣x∣−1−∣α∣−2γ e−C58∣x∣,

which finishes the proof.

Analogously to the proof of Theorem 5.2.3, we can establish the follow-
ing integrability properties by using the representation formula (5.59).

Theorem 5.3.4. Let λ ∈ R. Then

∀q ∈ [1, 5
3
) ∶ φλ

⊥ ∈ Lq(G), (5.68)

∀q ∈ [1, 5
4
) ∶ ∇φλ

⊥ ∈ Lq(G)3. (5.69)

Proof. Reformulating (5.59), we obtain

φλ
⊥ =F −1

G [M0 FG[F −1
G (K)]], ∂hφ

λ
⊥ =F −1

G [Mh FG[F −1
G (J )]]

for h = 1,2,3, where M0, K, Mh and J are defined in (5.45), (5.46), (5.47)
and (5.48), respectively. As shown in the proof of Theorem 5.2.3, M0 and
Mh are Lr(G) multipliers for all r ∈ (1,∞). Moreover, F −1

G [K] ∈ Lq(G)
for q ∈ (1, 53) and F −1

G [J ] ∈ Lq(G) for q ∈ (1, 43). Therefore, the above
representations yield (5.68) and (5.69) except for the case q = 1. However,
these integrability properties yield φλ

⊥, ∂hφλ
⊥ ∈ L1

loc(G), and the case q = 1
follows from the pointwise estimates established in Theorem 5.3.3.

Remark 5.3.5. Observe that in Theorem 5.3.3 and Theorem 5.3.4 the case
λ = 0 is not excluded. Therefore, these results also applicable in the
analysis of time-periodic Stokes flow.

Now we have completed the study of fundamental solutions for our
purposes. In the next chapter we apply the presented results in order
to analyze the spatially asymptotic behavior of the velocity and vorticity
fields associated to a time-periodic Navier–Stokes flow.

134



6 Spatial Decay of
Time-Periodic Solutions to
the Navier–Stokes Equations

6.1 The Velocity Field in the Whole Space . . . . . 137
6.1.1 An Asymptotic Expansion . . . . . . . . . . . . 138
6.1.2 Representation Formulas . . . . . . . . . . . . 140
6.1.3 Spatial Decay Estimates . . . . . . . . . . . . . 141

6.2 The Vorticity Field in the Whole Space . . . . . 147
6.2.1 Representation Formulas . . . . . . . . . . . . 148
6.2.2 A Decomposition of the Velocity Field . . . . . 150
6.2.3 Function Spaces . . . . . . . . . . . . . . . . . 151
6.2.4 Estimates of HS . . . . . . . . . . . . . . . . . 154
6.2.5 Estimates of FS(z) . . . . . . . . . . . . . . . . 157
6.2.6 Spatial Decay Estimates . . . . . . . . . . . . . 160

6.3 Spatial Decay in an Exterior Domain . . . . . . 163
6.3.1 Time-Periodic Flow Past a Moving Body . . . 163
6.3.2 Steady-State Flow Around a Rotating Body . 165

In this chapter, we study the asymptotic behavior of a time-periodic
Navier–Stokes flow past a body. More precisely, we derive spatial decay
estimates of solutions (u,p) to the time-periodic Navier–Stokes equations

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tu −∆u − λ∂1u + u ⋅ ∇u +∇p = f in T ×Ω,
divu = 0 in T ×Ω,

lim
∣x∣→∞

u(t, x) = 0 for t ∈ T
(6.1)

in a three-dimensional exterior domain Ω ⊂ R3 with Reynolds number
λ ≠ 0 and a given right-hand side f . Note that it is not necessary to specify
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6 Spatial Decay of Time-Periodic Solutions

the boundary values of u at ∂Ω in this framework since we study spatial
asymptotic properties of solutions that exist by assumption. Clearly, to
ensure existence of a time-periodic solution, one would have to choose
appropriate boundary values. In the following, our main interest lies in
the spatial decay of the velocity u and the associated vorticity curlu.

A classical approach is to derive such properties with the help of funda-
mental solutions. For this purpose, we consider the problem in the whole
space Ω = R3, move the nonlinear terms to the right-hand side, and regard
(u,p) as a solution to the linear time-periodic Oseen problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tu −∆u − λ∂1u +∇p = f̃ in T ×Ω,
divu = 0 in T ×Ω,

lim
∣x∣→∞

u(t, x) = 0 for t ∈ T,

with f̃ ∶= f − u ⋅ ∇u. We then can express the solution by means of the
time-periodic fundamental solutions introduced in Chapter 5 and obtain
the identities

u(t, x) = Γ λ ∗ f̃(t, x),

curlu(t, x) = ∫
T×R3

∇φλ(t − s, x − y) ∧ f̃(s, y)d(s, y).

The behavior of the velocity field of a time-periodic Navier–Stokes flow
was already studied by Galdi and Kyed [51], who established an asymp-
totic expansion for u. With the help of this expansion and the previous
formula for u, we establish pointwise estimates of u and ∇u. By an itera-
tive procedure, we improve the decay rates step by step until we arrive at
an optimal rate that coincides with the decay of the corresponding funda-
mental solution Γ λ and ∇Γ λ, respectively. As it turns out, this method
cannot be applied directly to derive the optimal decay rate for curlu.
Instead, we follow an idea used by Deuring and Galdi [17] to regard
the above formula as a fixed-point equation for the velocity field u. A
suitable reformulation allows us to show existence of a fixed point z in a
function class such that curl z has the expected decay properties and that
z(t, x) = u(t, x) for ∣x∣ sufficiently large. Consequently, the decay rates of
curlu and curl z coincide, which then concludes the proof.

One major discovery in Chapter 5 was that the properties of the steady-
state part and the purely periodic part of the considered time-periodic
fundamental solutions differ substantially. In view of this observation,
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we derive pointwise estimates for the steady-state part and the purely
periodic part of u separately. In the end, we see that this difference in
the decay rates also appears for both the velocity field and the vorticity
field of a time-periodic Navier–Stokes flow, and that the respective purely
periodic parts decay faster than the steady-state parts.

Observe that, from now on, when we give an estimate of the solution,
then the constant in that estimate usually depends on the considered
solution and thus on all other variables appearing in the system (6.1). For
this reason, we now refrain from writing down the exact dependencies of
the constants.

In Section 6.1 we derive pointwise estimates of u and ∇u. We express u
by means of the time-periodic velocity fundamental solution and employ
an iterative procedure to improve the decay estimates step by step. In
Section 6.2 we investigate spatial decay of the vorticity curlu. We express
curlu via the time-periodic vorticity fundamental solution, and we derive
decay estimates via a fixed-point argument. In Section 6.3 we apply our
findings to Navier–Stokes flows in exterior domains.

6.1 The Velocity Field in the Whole Space
In the following, we consider the time-periodic Navier–Stokes equations
in the three-dimensional whole space

{
∂tu −∆u − λ∂1u + u ⋅ ∇u +∇p = f in T ×R3,

divu = 0 in T ×R3,
(6.2)

for a Reynolds number λ > 0 and a fixed time period T > 0, which defines
the torus group T = R/T Z. Throughout this chapter, we always consider
weak solutions to (6.2) in the following sense.

Definition 6.1.1. Let f ∈ L1
loc(T ×R3)3. A function u ∈ L1

loc(T ×R3)3 is
called weak solution to (6.2) if

i. u ∈ L2(T;D1,2
0,σ(R3)),

ii. P�u ∈ L∞(T; L2(R3))3,

iii. the identity

∫
T×R3

[−u ⋅∂tϕ+∇u ∶ ∇ϕ−λ∂1u ⋅ϕ+(u ⋅∇u)⋅ϕ]d(t, x) = ∫
T×R3

f ⋅ϕd(t, x)

holds for all test functions ϕ ∈ C∞0,σ(T ×R3).
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Remark 6.1.2. The existence of a weak solution with the above properties
has been shown in [72, Theorem 6.3.1] for any f ∈ L2(T;D−1,20 (R3))3.
Therefore, this class seems to be a natural outset for further investigation.
Nevertheless, at first glance, instead of ii. one would expect the condition
u ∈ L∞(T; L2(R3))3 instead, which naturally appears for weak solutions
to the Navier–Stokes initial-value problem. From a physical perspective,
this would mean that the flow has finite kinetic energy. However, this
property cannot be expected for general time-periodic data f . As was
shown by Kyed [72, Theorem 5.2.4], for smooth data f ∈ C∞0 (T × R3)3
one has u ∈ L∞(T; L2(R3))3 if and only if ∫T×R3 f d(x, t) = 0. An analogous
property was established by Finn [35] for the corresponding steady-state
problem.

6.1.1 An Asymptotic Expansion
The asymptotic behavior of the solution to the time-periodic Navier–
Stokes equations (6.2) was studied by Galdi and Kyed in [51], who
established an asymptotic expansion for the velocity field. Their main
result reads as follows. For its statement, recall the steady-state Oseen
fundamental solution Γ λ

0 = ΓO given in (5.9).

Theorem 6.1.3. Let λ ≠ 0 and f ∈ C∞0 (T ×R3)3. If u is a weak solution
to (6.2) in the sense of Definition 6.1.1 such that

∃r ∈ (5,∞) ∶ P�u ∈ Lr(T ×R3)3, (6.3)

then

u(t, x) = Γ λ
0 (x) ⋅ ( ∫

T×R3

f(t, x)d(t, x)) +R(t, x) (6.4)

for all (t, x) ∈ T ×R3, where R satisfies

∀ε > 0 ∃C60 > 0 ∀∣x∣ ≥ 1, t ∈ T ∶ ∣R(t, x)∣ ≤ C60∣x∣−
3
2
+ε
. (6.5)

Proof. See [51].

Remark 6.1.4. As pointed out in [51], the assumption (6.3) merely appears
for technical reasons. It ensures additional local regularity, but it does not
improve spatial decay of the solution as ∣x∣ → ∞. For simplicity, one could
thus always assume (u,p) ∈ C∞(T×R3)3+1 instead of (6.3) and obtain the
same results.
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The leading term of the asymptotic expansion (6.4) is given by the
steady-state Oseen fundamental solution Γ λ

0 . Further note that the above
expansion is in accordance with the asymptotic expansion for the steady-
state velocity field; see [42, Theorem X.8.2]. Note that the steady-state
flow is a special case of time-periodic flow. Moreover, from Theorem 6.1.3
we immediately conclude the following decay estimates for the velocity
field u.

Corollary 6.1.5. Let u be as in Theorem 6.1.3. Then for all ε > 0 there
exists C61 > 0 such that for all ∣x∣ ≥ 1 and t ∈ T it holds

∣Pu(x)∣ ≤ C61∣x∣−1(1 + s(λx))−
1
2
+ε, (6.6)

∣P�u(t, x)∣ ≤ C61∣x∣−
3
2
+ε
, (6.7)

where s(x) ∶= ∣x∣ + x1.
Proof. From Theorem 6.1.3 we directly obtain

∣Pu(x)∣ ≤ c0∣Γ λ
0 (x)∣ + ∣PR(x)∣ ≤ c1([∣x∣(1 + s(λx))]−1 + ∣x∣−

3
2
+ε),

where we used estimate (5.25) for m = 0. Now the elementary estimate
1 + s(λx) ≤ (1 + 2∣λ∣)∣x∣ yields (6.6). Moreover, due to P�Γ λ

0 = 0, we have
P�u = P�R, which directly implies (6.7).

Remark 6.1.6. From the proof of Theorem 6.1.3 in [51], one can extract
the much better decay estimate ∣P�u(t, x)∣ ≤ C62∣x∣−

12
5
+ε for the purely

periodic part. However, the above result will be enough for our purposes,
and we later derive an improved estimate anyway.

As we shall see in Theorem 6.1.9 below, the decay results of Corollary
6.1.5 are not optimal, which mainly has two reasons: Firstly, Theorem
6.1.3 does not treat the purely periodic part P�u separately, so that its
decay properties can merely be extracted from the remainder term R as
we did in the previous proof. Secondly, the proof of Theorem 6.1.3 in [51]
does not exploit the anisotropic decay estimate (5.25) and only makes use
of the isotropic estimate ∣Γ λ

0 (x)∣ ≤ C63∣x∣−1. If the argument in [51] had
instead been based on estimate (5.25) in [51], then one could derive an
improved (anisotropic) decay estimate of the remainder term R.

Furthermore, from Theorem 6.1.9 we cannot extract information on the
gradient ∇u of the velocity field, for which we also establish a decay result
below. Besides being interesting in its own right, spatial estimates of
∇u are exploited in Section 6.2, where we derive decay properties of the
vorticity field curlu.
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6.1.2 Representation Formulas
Our approach for the derivation of pointwise estimates of the velocity
field u is based on a representation via the time-periodic fundamental
solution Γ λ introduced in (5.37). More precisely, we utilize the identity
u = Γ λ ∗ (f − u ⋅ ∇u). In order to show this representation formula in a
rigorous way, we employ the following regularity result.

Lemma 6.1.7. Let λ ≠ 0 and f ∈ C∞0 (T × R3)3, and let u be a weak
solution to (6.2) in the sense of Definition 6.1.1, which satisfies (6.3).
Then u ∈ C∞(T ×R3)3 and

∀q ∈ (1,2), r ∈ (1,∞) ∶ Pu ∈Xq
λ(R3) ∩D2,r(R3)3,

∀q ∈ (1,∞) ∶ P�u ∈W1,2,q(T ×R3)3,

where Xq
λ(R3) was introduced in (3.2). Moreover, there is a pressure

function p ∈ C∞(T ×R3) such that (6.2) is satisfied pointwise and

∀q ∈ (1,3), s ∈ (1,∞) ∶ p ∈ Lq(T; L
3q
3−q (Ω)) ∩ Ls(T;D1,s(Ω)).

Proof. This result was shown in [51, Lemma 5.1].

Now we can derive the desired representation formula. We decompose
it into formulas for the steady-state and the purely periodic part of the
velocity, which are given by convolution with Γ λ

0 = ΓO and Γ λ
⊥ defined in

(5.9) and (5.39), respectively.

Proposition 6.1.8. Let λ ≠ 0 and f ∈ C∞0 (T ×R3)3, and let u be a weak
solution to (6.2) in the sense of Definition 6.1.1, which satisfies (6.3).
Then

Dα
xu =Dα

xΓ
λ ∗ [f − u ⋅ ∇u] (6.8)

for all α ∈ N3
0 with ∣α∣ ≤ 1. In particular, the steady-state part v ∶= Pu and

the purely periodic part w ∶= P�u satisfy

Dα
xv =Dα

xΓ
λ
0 ∗ [Pf − v ⋅ ∇v − P(w ⋅ ∇w)], (6.9)

Dα
xw =Dα

xΓ
λ
⊥ ∗ [P�f − v ⋅ ∇w −w ⋅ ∇v − P�(w ⋅ ∇w)]. (6.10)

Moreover, we have1

u = Γ λ ∗ f −∇Γ λ ∗ (u⊗ u) (6.11)
1Here we set (∇Γλ ∗U)j ∶= ∑3

`,m=1 ∂mΓλ
j` ∗Ujm for an R3×3-valued function U .

140



6.1 The Velocity Field in the Whole Space

and

v = Γ λ
0 ∗ Pf −∇Γ λ

0 ∗ [v ⊗ v + P(w ⊗w)], (6.12)
w = Γ λ

⊥ ∗ P�f −∇Γ λ
⊥ ∗ [v ⊗w +w ⊗ v + P�(w ⊗w)]. (6.13)

Proof. From Lemma 6.1.7 we obtain u ∈ Lr(T × R3) for all r ∈ (2,∞)
and ∇u ∈ Ls(T ×R3) for all s ∈ (43 ,∞), so that u ⋅ ∇u ∈ Lq(T ×R3) for all
q ∈ (1,∞). Since Γ λ = Γ λ

0 ⊗1T+Γ λ
⊥ , the function U ∶= Γ λ∗(f−u ⋅∇u) is well

defined as a classical convolution integral by Theorem 5.1.8 and Theorem
5.2.3. With the same argument and the dominated convergence theorem,
we further obtain ∂jU = ∂jΓ λ ∗ (f − u ⋅ ∇u) for j = 1,2,3. Moreover, we
have

PU = (Γ λ
0 ⊗ 1T) ∗ [f − u ⋅ ∇u] = Γ λ

0 ∗ [P(f − u ⋅ ∇u)]
= Γ λ

0 ∗ [Pf − v ⋅ ∇v − P(w ⋅ ∇w)],
P�U = Γ λ

⊥ ∗ [f − u ⋅ ∇u] = Γ λ
⊥ ∗ [P�(f − u ⋅ ∇u)]

= Γ λ
⊥ ∗ [P�f − v ⋅ ∇w −w ⋅ ∇v − P�(w ⋅ ∇w)].

Therefore, (6.8), (6.9) and (6.10) follow if U = u. Since both U and u
satisfy the time-periodic Oseen system (5.33) for suitable pressure func-
tions p, the uniqueness statement from Lemma 5.2.5 implies P�u = P�U
and that Pu − PU is a polynomial in each component. With Young’s
inequality we obtain

∥PU∥6 ≤ ∥Γ λ
0 ∥12/5∥P(f − u ⋅ ∇u)∥12/9 < ∞

since Γ λ
0 ∈ L12/5(R3) by Theorem 5.1.8. Therefore, Pu − PU ∈ L6(R3),

which implies Pu = PU . In total, we thus have u = U = Γ λ ∗ (f − u ⋅ ∇u).
The remaining formulas (6.11), (6.12) and (6.13) now follow from the
identity u ⋅ ∇u = div(u⊗ u) due to divu = 0.

6.1.3 Spatial Decay Estimates
Now we employ the representation formulas (6.8) and (6.11) in order to
derive a decay estimate of u and ∇u. The proof is based on an iterative
procedure: For u we already have a pointwise estimate by Corollary 6.1.5.
This immediately yields a (faster) decay rate of u⊗u, which we can use to
obtain a new estimate of u via (6.11). Repeating this argument, we can
improve the estimate of u iteratively. These new estimates lead to an even
better estimate of u⊗u. Employing (6.11) again, we then deduce another
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6 Spatial Decay of Time-Periodic Solutions

estimate of u. Note that, since f ∈ C∞0 (T ×R3), we directly conclude an
estimate of the term Γ λ∗f from Theorem 5.1.7 and Theorem 5.2.8. Since
this term appears in each step of the above iteration, we cannot improve
the decay estimate of u beyond that of Γ λ ∗ f , which coincides with the
decay rate of Γ λ.

The proof for the decay rate of ∇u works slightly different. In this case,
we do not have a decay rate initially, which is why we use integrability
results from Lemma 6.1.7 in order to deduce a first spatial estimate of ∇u
from the representation (6.8). While this will not be optimal, we can then
employ the above iteration scheme again until we arrive at the decay rate
of ∇(Γ λ ∗ f), which coincides with that of ∇Γ λ.

As the purely periodic part decays faster than the steady-state part of
the fundamental solution (compare Theorem 5.1.7 with Theorem 5.2.8),
one can also expect that the purely periodic part of the velocity field decays
faster than its steady-state part. We therefore establish separate spatial
decay estimates of both parts of u and ∇u by exploiting the decomposed
representation formulas from Proposition 6.1.8.

Note that the constant appearing in the estimates for u depends on the
solution u itself.
Theorem 6.1.9. Let λ ≠ 0 and f ∈ C∞0 (T×R3)3, and let u be a weak time-
periodic solution to (6.2) in the sense of Definition 6.1.1, which satisfies
(6.3). Then there is C64 > 0 such that for all t ∈ T and x ∈ R3 the function
u satisfies

∣Pu(x)∣ ≤ C64[(1 + ∣x∣)(1 + s(λx))]
−1
, (6.14)

∣∇Pu(x)∣ ≤ C64[(1 + ∣x∣)(1 + s(λx))]
− 3

2 , (6.15)

∣P�u(t, x)∣ ≤ C64(1 + ∣x∣)
−3
, (6.16)

∣∇P�u(t, x)∣ ≤ C64(1 + ∣x∣)
−4
. (6.17)

Proof. We split u = v + w into a steady-state part v ∶= Pu and a purely
periodic part w ∶= P�u. By Lemma 6.1.7 we have u ∈ C∞(T × R3)3, and
thus

∣v(x)∣ + ∣∇v(x)∣ + ∣w(t, x)∣ + ∣∇w(t, x)∣ ≤ c0 (6.18)

for all t ∈ T and ∣x∣ ≤ 1. Combining (6.18) with Corollary 6.1.5 (with
ε = 1/4), we conclude

∣v(x)∣ ≤ c1(1 + ∣x∣)−1(1 + s(λx))
−1/4

, (6.19)
∣w(t, x)∣ ≤ c2(1 + ∣x∣)−5/4 (6.20)
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for all t ∈ T and x ∈ R3. This implies

∣v ⊗ v + P[w ⊗w]∣(x) ≤ c3((1 + ∣x∣)−2(1 + s(λx))−1/2 + (1 + ∣x∣)−5/2)
≤ c4(1 + ∣x∣)−2(1 + s(λx))−1/2,

and the representation formula (6.12) in combination with Pf ∈ C∞0 (R3)
and Theorem 5.1.7 yields

∣v(x)∣ ≤ ∣Γ λ
0 ∗ Pf ∣(x) + ∣∇Γ λ

0 ∗ [v ⊗ v + P[w ⊗w]]∣(x)

≤ c5([(1 + ∣x∣)(1 + s(λx))]
−1 + (1 + ∣x∣)−5/4(1 + s(λx))−3/4)

≤ c6[(1 + ∣x∣)(1 + s(λx))]
−1
,

which is the desired estimate (6.14).
Now (6.14) together with (6.20) leads to

∣v ⊗w +w ⊗ v + P�[w ⊗w]∣(t, x) ≤ c7((1 + ∣x∣)−9/4 + (1 + ∣x∣)−5/2)
≤ c8(1 + ∣x∣)−9/4.

(6.21)

Therefore, the representation formula (6.13) in combination with P�f ∈
C∞0 (T ×R3) and Theorem 5.2.8 implies

∣w(t, x)∣ ≤ ∣Γ λ
⊥ ∗ P�f ∣(t, x) + ∣∇Γ λ

⊥ ∗ [v ⊗w +w ⊗ v + P�[w ⊗w]]∣(t, x)
≤ c9((1 + ∣x∣)−3 + (1 + ∣x∣)−9/4) ≤ c10(1 + ∣x∣)−9/4.

Using this estimate and (6.14) again, we conclude

∣v ⊗w +w ⊗ v + P�[w ⊗w]∣(t, x) ≤ c11((1 + ∣x∣)−13/4 + (1 + ∣x∣)−9/2)
≤ c12(1 + ∣x∣)−13/4.

(6.22)

Repeating the above argument with (6.22) instead of (6.21), we end up
with (6.16).

Now let us turn to the estimates of ∇u. Due to (6.18), the estimates
(6.15) and (6.17) hold for all t ∈ T and ∣x∣ ≤ 2, and it suffices to consider
∣x∣ ≥ 2 in the following. Let R ∶= ∣x∣/2 ≥ 1. By Proposition 6.1.8, for
j ∈ {1,2,3} we have

∂jv(x) = I1(x) + I2(x) + I3(x),
∂jw(t, x) = J1(t, x) + J2(t, x) + J3(t, x) + J4(t, x)
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with

I1 ∶= ∂jΓ λ
0 ∗ Pf, J1 ∶= ∂jΓ λ

⊥ ∗ P�f,
I2 ∶= ∂jΓ λ

0 ∗ [ − v ⋅ ∇v], J2 ∶= ∂jΓ λ
⊥ ∗ [ − v ⋅ ∇w],

I3 ∶= ∂jΓ λ
0 ∗ [ − P[w ⋅ ∇w]], J3 ∶= ∂jΓ λ

⊥ ∗ [ −w ⋅ ∇v],
J4 ∶= ∂jΓ λ

⊥ ∗ [ − P�[w ⋅ ∇w]].

We estimate these terms separately. Since f ∈ C∞0 (R3), an application of
Theorem 5.1.7 leads to

∣I1(x)∣ ≤ c13[(1 + ∣x∣)(1 + s(λx))]
−3/2

. (6.23)

We decompose I2 and estimate ∣I2∣ ≤ I21 + I22 with

I21(x) ∶= ∫
BR

∣∂jΓ λ
0 (x − y)∣∣v(y)∣∣∇v(y)∣dy,

I22(x) ∶= ∫
BR

∣∂jΓ λ
0 (x − y)∣∣v(y)∣∣∇v(y)∣dy.

Since ∣y∣ ≤ R implies ∣x − y∣ ≥ ∣x∣/2 = R ≥ 1, the pointwise estimate (5.25)
yields

I21(x) ≤ ∫
BR

[(1 + ∣x − y∣)(1 + s(x − y))]−3/2∣v(y)∣∣∇v(y)∣dy

≤ c14(1 + ∣x∣)−3/2∥v∥3∥∇v∥ 3
2
≤ c15(1 + ∣x∣)−3/2

because v ∈ L3(R3) and ∇v ∈ L3/2(R3) by Lemma 6.1.7. Moreover, we
have ∂jΓ λ

0 ∈ L17/12(R3) and ∇v ∈ L17/5(R3) due to estimates (5.28) and
(5.29) and Lemma 6.1.7, which leads to

I22(x) ≤ c16∥∂jΓ λ
0 ∥ 17

12
∥∇v∥ 17

5
∥v∥L∞(BR) ≤ c17(1 + ∣x∣)−1

by (6.14). For I3 we proceed similarly. We estimate ∣I3∣ ≤ I31 + I32, where

I31(x) ∶= ∫
BR

∣∂jΓ λ
0 (x − y)∣∣P(w ⋅ ∇w)(y)∣dy,

I32(x) ∶= ∫
BR

∣∂jΓ λ
0 (x − y)∣∣P(w ⋅ ∇w)(y)∣dy.
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Arguing as for I21 and I22, we obtain

I31(x) ≤ c18∫
BR

[(1 + ∣x − y∣)(1 + s(x − y))]−3/2∫
T

∣w(t, y)∣∣∇w(t, y)∣dtdy

≤ c19(1 + ∣x∣)−3/2∥w∥ 3
2
∥∇w∥3 ≤ c20(1 + ∣x∣)−3/2

and

I32(x) ≤ c21∥∂jΓ λ
0 ∥ 17

12
∥∇w∥

L1(T;L
17
5 (R3))

∥w∥L∞(T×BR) ≤ c22(1 + ∣x∣)−3.

Collecting the above estimates, we thus conclude

∣∇v(x)∣ ≤ c23(1 + ∣x∣)−1 (6.24)

for ∣x∣ ≥ 2. By (6.18), this estimates also holds for ∣x∣ ≤ 2 and thus for all
x ∈ R3. In order to improve the estimate, we next consider ∂jw. From
f ∈ C∞0 (T ×R3) and Theorem 5.2.8, we directly deduce

∣J1(t, x)∣ ≤ c24(1 + ∣x∣)−4. (6.25)

We decompose J2 and estimate ∣J2∣ ≤ J21 + J22 with

J21(t, x) ∶= ∫
T
∫
BR

∣∂jΓ λ
⊥ (t − s, x − y)∣∣v(y)∣∣∇w(s, y)∣dyds,

J22(t, x) ∶= ∫
T
∫
BR

∣∂jΓ λ
⊥ (t − s, x − y)∣∣v(y)∣∣∇w(s, y)∣dyds.

By Hölder’s inequality in space and time, from (5.41) we obtain

J21(t, x) ≤ (∫
BR

∫
T

∣∂jΓ λ
⊥ (t − s, x − y)∣

2
dsdy)

1
2

∥v∥4∥∇w∥4

≤ c25(∫
BR

∣x − y∣−8 dy)
1
2

∥v∥4∥∇w∥4

≤ c26∣x∣−4R
3
2 ∥v∥4∥∇w∥4 ≤ c27∣x∣−5/2

since v ∈ L4(R3) and ∇w ∈ L4(T ×R3) by Lemma 6.1.7. Another applica-
tion of Hölder’s inequality and the decay estimate (6.14) yield

J22(t, x) ≤ ∫
T
∫
BR

∣∂jΓ λ
⊥ (t − s, x − y)∣dyds sup

(s,y)∈T×BR

∣v(y) ⋅ ∇w(s, y)∣

≤ c28∥∂jΓ λ
⊥ ∥1∥v∥L∞(BR)∥∇w∥∞ ≤ c29∣x∣−1
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because ∇Γ λ
⊥ ∈ L1(T × R3) by (5.44) and ∇w ∈ L∞(T × R3) by Lemma

6.1.7 and Sobolev embeddings. In a similar fashion, we can use (6.16) to
estimate J3 and J4 and obtain

∣J3(t, x)∣ ≤ c30(∣x∣−
5
2 ∥w∥4∥∇v∥4 + ∣x∣−3∥∂jΓ λ

⊥ ∥ 9
8
∥∇v∥9) ≤ c31∣x∣−

5
2 ,

∣J4(t, x)∣ ≤ c32(∣x∣−
5
2 ∥w∥4∥∇w∥4 + ∣x∣−3∥∂jΓ λ

⊥ ∥1∥∇w∥∞) ≤ c33∣x∣
− 5

2 .

Collecting the above estimates, we end up with

∣∇w(t, x)∣ ≤ c34(1 + ∣x∣)−1 (6.26)

for ∣x∣ ≥ 2. Again, (6.18) implies that this estimate also holds for ∣x∣ ≤ 2,
and thus for all (t, x) ∈ T ×R3.

With (6.26) at hand, we can now improve (6.24) by a bootstrap argu-
ment. By (6.14), (6.24), (6.16) and (6.26), we have

∣v(x) ⋅ ∇v(x) + P[w ⋅ ∇w](x)∣
≤ c35((1 + ∣x∣)−2(1 + s(λx))−1 + (1 + ∣x∣)−4)
≤ c36(1 + ∣x∣)−2(1 + s(λx))−1/2,

so that Theorem 5.1.7 implies

∣I2(x) + I3(x)∣ ≤ c37(1 + ∣x∣)−5/4(1 + s(λx))−3/4.

Together with (6.23) we thus obtain

∣∇v(x)∣ ≤ c38(1 + ∣x∣)−5/4(1 + s(λx))−3/4,

so that from (6.14), (6.16) and (6.26) we deduce

∣v(x) ⋅ ∇v(x) + P[w ⋅ ∇w](x)∣
≤ c39((1 + ∣x∣)−9/4(1 + s(λx))−7/4 + (1 + ∣x∣)−4)
≤ c40(1 + ∣x∣)−9/4(1 + s(λx))−7/4.

Another application of Theorem 5.1.7 now leads to

∣I2(x) + I3(x)∣ ≤ c41[(1 + ∣x∣)(1 + s(λx))]
−3/2

,

and by a combination with (6.23) we arrive at (6.15).
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For the derivation of (6.17) we employ a similar bootstrap argument.
Now from (6.14), (6.15), (6.16) and (6.26) we deduce

N(t, x) ∶= ∣v(x) ⋅ ∇w(t, x) +w(t, x) ⋅ ∇v(x) + P�[w(t, x) ⋅ ∇w(t, x)]∣
≤ c42((1 + ∣x∣)−2 + (1 + ∣x∣)−

9
2 + (1 + ∣x∣)−4) ≤ c43(1 + ∣x∣)−2,

so that Theorem 5.2.8 implies

J(t, x) ∶= ∣J2(t, x) + J3(t, x) + J4(t, x)∣ ≤ c44(1 + ∣x∣)−2.

Combining this with (6.25), we conclude

∣∇w(t, x)∣ ≤ c45(1 + ∣x∣)−2, (6.27)

which we use together with (6.14), (6.15) and (6.16) to deduce

N(t, x) ≤ c46(1 + ∣x∣)−3 ≤ c47(1 + ∣x∣)−5/2.

This results in J(t, x) ≤ c48(1+ ∣x∣)−5/2 by Theorem 5.2.8, and from (6.25)
we conclude

∣∇w(t, x)∣ ≤ c49(1 + ∣x∣)−5/2.
A combination of this estimate with (6.14), (6.15), (6.16) leads toN(t, x) ≤
c50(1 + ∣x∣)−7/2. Hence, J(t, x) ≤ c51(1 + ∣x∣)−7/2 by Theorem 5.2.8, and
together with (6.25) we have

∣∇w(t, x)∣ ≤ c52(1 + ∣x∣)−7/2.

In combination with (6.14), (6.15) and (6.16), this implies the estimate
N(t, x) ≤ c53(1+∣x∣)−9/2, and thus J(t, x) ≤ c54(1+∣x∣)−4. Exploiting (6.25)
again, we finally conclude the remaining estimate (6.17).

6.2 The Vorticity Field in the Whole Space
After the deduction of spatial decay estimates of u and ∇u in Theorem
6.1.9, this section is dedicated to the deduction of analogous estimates
of the vorticity curlu. In virtue of the proof of Theorem 6.1.9, it seems
natural to exploit properties of the vorticity fundamental solution φλ in-
troduced in (5.56).

By Theorem 6.1.9 we already have a decay estimate for the vorticiy
curlu, namely

∣P curlu(x)∣ ≤ C65∣∇Pu(x)∣ ≤ C66[(1 + ∣x∣)(1 + s(λx))]
− 3

2 ,

∣P� curlu(t, x)∣ ≤ C67∣∇P�u(t, x)∣ ≤ C68(1 + ∣x∣)
−4
.
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However, comparing these decay rates to those of the vorticity fundamen-
tal solution φλ = φλ

0 ⊗ 1T + φλ
⊥ given in Theorem 5.3.1 and Theorem 5.3.3,

they seem not to be optimal since one would also expect some kind of
exponential decay (at least outside of the wake region). Note that steady
state solutions (6.2) show this behavior; see [14, 6]. Indeed, this is the
case as we shall see in the following.

Starting from the above decay rates for curlu, one could think of pro-
ceeding as in the proof of Theorem 6.1.9 and successively increasing the
decay rate of curlu with the help of an appropriate representation formula
by a bootstrap argument. Indeed, an according formula is available as we
shall see in Section 6.2.1. However, starting from the above polynomial
decay rate, this iteration would only result in polynomial decay rates and
thus cannot capture the expected decay of exponential type, which is sug-
gested by the decay estimates of φλ. Therefore, we employ a different
approach: We express u as a fixed point of a certain mapping FS and
show that the fixed-point equation z = FS(z) has a solution in a certain
class of functions z such that curl z has the expected exponential decay
rate. Afterwards, we show uniqueness of the solution to this fixed-point
equation, but in the larger class of functions that merely share the decay
rate of u established in Theorem 6.1.9. This implies u = z and results in
the desired estimates for curlu.

Since the representation formula we derive for curlu is of the form (5.54),
the final decay rate will be governed by that of ∇φλ. However, while the
steady-state part of curlu has the same decay rate as the steady-state part
∇φλ

0 , the purely periodic part of curlu decays slower than ∇φλ
⊥ and also

exhibits a wake-like behavior. This phenomenon is due to the interaction
of the nonlinear terms and is further explained in Remark 6.2.2 below.

6.2.1 Representation Formulas

In order to derive a decay estimate for the vorticity curlu from the prop-
erties of the vorticity fundamental solution φλ, we need to connect these
objects in an appropriate way as we already did in Subsection 6.1.2 for
the velocity. A simple application of curl to both sides of (6.8) and a
computation as at the beginning of Subsection 5.3.1 would lead to the
formula

curlu(t, x) = ∫
G

∇φλ(t − s, x − y) ∧ [f − u ⋅ ∇u](s, y)d(s, y),
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where we recall the abbreviation G ∶= T×R3. However, this representation
cannot yield decay of exponential type since Theorem 6.1.9 merely gives a
polynomial decay rate of u⋅∇u. Therefore, we need different representation
formulas, which we introduce in the next proposition.

Proposition 6.2.1. Let λ ≠ 0 and f ∈ C∞0 (T ×R3)3, and let u be a weak
solution to (6.2) in the sense of Definition 6.1.1, which satisfies (6.3).
Then

Dα
xu =Dα

xΓ
λ ∗ [f − curlu ∧ u] (6.28)

for all α ∈ N3
0 with ∣α∣ ≤ 1. In particular, the steady-state part v ∶= Pu and

the purely periodic part w ∶= P�u satisfy

Dα
xv =Dα

xΓ
λ
0 ∗ [Pf − curl v ∧ v − P(curlw ∧w)], (6.29)

Dα
xw =Dα

xΓ
λ
⊥ ∗ [P�f − curl v ∧w − curlw ∧ v + P�(curlw ∧w)]. (6.30)

Moreover, we have

curlu(t, x) = ∫
G

∇φλ(t − s, x − y) ∧ [f − curlu ∧ u](s, y)d(s, y), (6.31)

and

curl v(x) = ∫
R3

∇φλ
0(x− y) ∧ [Pf − curl v ∧ v −P(curlw ∧w)](y)dy, (6.32)

as well as

curlw(t, x) = ∫
G

∇φλ
⊥(t − s, x − y) ∧ [P�f − curl v ∧w

− curlw ∧ v − P�(curlw ∧w)](s, y)d(s, y).
(6.33)

Proof. A straightforward calculation shows that

u ⋅ ∇u = 1

2
∇(∣u∣2) + curlu ∧ u.

Since Γ λ∗∇(∣u∣2) = div (Γ λ∗ ∣u∣2) = 0 due to (5.35)2, the equations (6.28),
(6.29) and (6.30) are direct consequences of (6.8). Repeating now the
computations from the beginning of Subsection 5.3.1 with f replaced with
f − curlu ∧ u, we conclude the remaining identities.
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Remark 6.2.2. Let us have a closer look at the formulas (6.32) and (6.33)
and the decay rates we can expect to derive for curl v and curlw. As we
see below, curl v obeys the estimate

∣curl v(x)∣ ≤ C69∣x∣−3/2 e−C70s(λx) (6.34)

for ∣x∣ sufficiently large. This means that the decay rate of the steady-
state part curl v of the vorticity coincides with the associated integral
kernel ∇φλ

0 , which is the best we can expect for general f ∈ C∞0 (G). This
is the same phenomenon we discovered for the steady-state and purely
periodic parts of u and ∇u. In contrast, we find

∣curlw(t, x)∣ ≤ C71∣x∣−9/2 e−C72s(λx)

for ∣x∣ sufficiently large. This decay is not as fast as that of ∇φλ
⊥, which

decays exponentially in every direction; see (5.66). This discrepancy is
due to the term curl v ∧ w appearing in (6.33). Assuming the optimal
decay rates of curl v above and of w from (6.17), we conclude the estimate

∣curl v ∧w∣(t, x) ≤ C73∣x∣−9/2 e−C74s(λx),

which cannot be improved. Therefore, this slower decay rate dominates
the spatial decay estimates of curlw. Note that although curlw does not
decay as fast as ∇φλ

⊥, its decay is faster than that of the steady-state part
curl v.

6.2.2 A Decomposition of the Velocity Field
Here we derive the fixed-point equation our approach is based on. For
this purpose, we express u by means of the representation (6.28), which
we decompose into the sum of two terms.

Let χ ∈ C∞0 (R; [0,1]) with χ(s) = 1 for ∣s∣ ≤ 5/4 and χ(s) = 0 for ∣s∣ ≥ 7/4.
For S > 0 define the function χS ∈ C∞0 (R3; [0,1]) by χS(x) ∶= χ(S−1∣x∣).
Consider S0 > 0 such that supp f ⊂ T × BS0 . For S ∈ [2S0,∞) we express
the representation formula (6.28) as the sum of two terms, namely

u = Γ λ ∗ [ − (1 − χS) curlu ∧ u] + Γ λ ∗ [f − χS curlu ∧ u].

Due to supp(1 − χS) ⊂ BS, this yields

u∣T×BS = FS(u∣T×BS) +HS, (6.35)
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where

FS(z) ∶= (Γ λ ∗ [ − (1 − χS) curl z ∧ z])∣T×BS ,

HS ∶= (Γ λ ∗ [f − χS curlu ∧ u])∣T×BS .

We set
A(z) ∶= − curl z ∧ z.

Then, with z0 ∶= Pz and z⊥ ∶= P�z we have

A0(z) ∶= PA(z) = − curl z0 ∧ z0 − P(curl z⊥ ∧ z⊥), (6.36)
A⊥(z) ∶= P�A(z) = − curl z0 ∧ z⊥ − curl z⊥ ∧ z0 − P�(curl z⊥ ∧ z⊥), (6.37)

and for α ∈ N3
0 with ∣α∣ ≤ 1 we obtain

Dα
xPFS(z)(x) = (Dα

xΓ
λ
0 ∗ [(1 − χS)A0(z)])(x), (6.38)

Dα
xP�FS(z)(t, x) = (Dα

xΓ
λ
⊥ ∗ [(1 − χS)A⊥(z)])(t, x), (6.39)

curlPFS(z)(x) = ∫
R3

∇φλ
0(x − y) ∧ [(1 − χS)A0(z)](y)dy, (6.40)

curlP�FS(z)(t, x)

= ∫
T×R3

∇φλ
⊥(t − s, x − y) ∧ [(1 − χS)A⊥(z)](s, y)d(s, y), (6.41)

and

Dα
xPHS(x) = (Dα

xΓ
λ
0 ∗ [Pf + χSA0(u)])(x), (6.42)

Dα
xP�HS(t, x) = (Dα

xΓ
λ
⊥ ∗ [P�f + χSA⊥(u)])(t, x), (6.43)

curlPHS(x) = ∫
R3

∇φλ
0(x − y) ∧ [Pf + χSA0(u)](y)dy, (6.44)

curlP�HS(t, x)

= ∫
T×R3

∇φλ
⊥(t − s, x − y) ∧ [P�f + χSA⊥(u)](s, y)d(s, y) (6.45)

for all t ∈ T and x ∈ R3 with ∣x∣ > S.

6.2.3 Function Spaces
We introduce the functional framework. Let ε ∈ (0, 14) and fix a radius
S > 0. We define the following (semi-)norms, which take into account the
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different decay rates of the steady-state and the purely periodic parts:

MS(z) ∶= ess sup
x∈BS

[∣x∣(1 + s(x))∣Pz(x)∣ + [∣x∣(1 + s(x))]3/2∣∇Pz(x)∣]

+ ess sup
(t,x)∈T×BS

[∣x∣3∣P�z(t, x)∣ + ∣x∣4∣∇P�z(t, x)∣],

Nε
S(z) ∶= ess sup

x∈BS

∣x∣3/2 e
s(Kx)
1+S ∣curlPz(x)∣

+ ess sup
(t,x)∈T×BS

∣x∣9/2−ε e
s(Kx)
1+S ∣curlP�z(t, x)∣,

where K ∶= 1
4 sgn(λ)min{∣λ∣,C58} with C58 from Theorem 5.3.3.

We defined MS(z) in the above way in order to adequately capture the
asymptotic behavior of u and ∇u. Recall that we have MS(u∣T×BS) < ∞
due to Theorem 6.1.9.

In contrast, the motivation for the definition of Nε
S(z) requires more

explanation. First, let us focus on the exponential term. How the denom-
inator 1 + S comes into play will become clear in Lemma 6.2.4 below. To
explain the choice of the constant K, note that for K > 0 we have λ > 0
and λ ≥ 4K, so that

s(Kx) =K(∣x∣ + x1) ≤
1

4
λ(∣x∣ + x1) =

1

4
s(λx),

and for K < 0 we have λ < 0 and −λ ≥ −4K, so that

s(Kx) = −K(∣x∣ − x1) ≤ −
1

4
λ(∣x∣ − x1) =

1

4
s(λx).

In total, we thus see
s(Kx) ≤ 1

4
s(λx).

Additionally, we have

s(Kx) ≤ 2∣Kx∣ ≤ 1

2
C58∣x∣.

In virtue of these two inequalities, we deduce

e2s(Kx) ≤ es(λx)/2, e2s(Kx) ≤ eC58∣x∣ (6.46)

for all x ∈ R3. Therefore, the choice of K enables us to relate the above
exponential term with the exponential terms in the decay rates of both
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the steady-state and the purely periodic part of the vorticity fundamental
solution; see Theorem 5.3.1 and Theorem 5.3.3.

Another aspect worth a comment is the second term in the definition
of Nε

S(z), which captures the decay of the purely periodic part of curl z
and contains the factor ∣x∣9/2−ε instead of ∣x∣9/2. In the end, this difference
ensures that FS becomes a contraction in the underlying function space
for large S. However, after having shown Nε

S(u∣T×BS) < ∞, we can finally
omit ε by using representation formula (6.33) again.

We further introduce the function spaces MS and N ε
S associated to

these (semi-)norms and set

MS ∶= {z ∈W1,1
loc(T ×BS) ∣ MS(z) < ∞},

N ε
S ∶= {z ∈ MS ∣ Nε

S(z) < ∞}.

Next let us show that these are Banach spaces.

Lemma 6.2.3. Let S > 0 and ε ∈ (0,1/4). Let MS and N ε
S be equipped

with the norms ∥⋅∥MS
and ∥⋅∥N ε

S
defined by

∥z∥MS
∶=MS(z), ∥z∥N ε

S
∶=MS(z) +Nε

S(z),

respectively. Then MS and N ε
S are Banach spaces.

Proof. Clearly, ∥⋅∥MS
and ∥⋅∥N ε

S
define norms onMS and N ε

S , respectively.
Let (zj) be a Cauchy sequence in MS or N ε

S . Then (zj) is also a Cauchy
sequence in W1,∞(T × BS), and thus possesses a limit z ∈W1,∞(T × BS).
For j ∈ N define

fj(t, x) ∶= ∣x∣(1 + s(x))Pzj(x) + ∣x∣3P�zj(t, x),

gj(t, x) ∶= [∣x∣(1 + s(x))]
3/2∇Pzj(x) + ∣x∣4∇P�zj(t, x)

for (t, x) ∈ T ×BS.
If (zj) is a Cauchy sequence in MS, then (fj) and (gj) are Cauchy se-

quences in L∞(T×BS), which possess limits f and g, respectively. Because
(fj), (gj), (zj) and (∇zj) converge pointwise almost everywhere, we see
that

f(t, x) = ∣x∣(1 + s(x))Pz(x) + ∣x∣3P�z(t, x),

g(t, x) = [∣x∣(1 + s(x))]3/2∇Pz(x) + ∣x∣4∇P�z(t, x)

for almost all (t, x) ∈ T×BS. Now f, g ∈ L∞(T×BS) implies z ∈ MS. This
shows completeness of MS.
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If (zj) is a Cauchy sequence in N ε
S , it is a Cauchy sequence in MS as

well, and we conclude z ∈ MS as above. We further define

hj(t, x) = ∣x∣3/2 e
s(Kx)
1+S curlPzj(x) + ∣x∣9/2−ε e

s(Kx)
1+S curlP�zj(t, x).

Then, (hj) is a Cauchy sequence in L∞(T × BS) and possesses a limit
h ∈ L∞(T × BS). Because (hj) and (∇zj) converge pointwise almost ev-
erywhere, we conclude

h(t, x) = ∣x∣3/2 e
s(Kx)
1+S curlPz(x) + ∣x∣9/2−ε e

s(Kx)
1+S curlP�z(t, x),

and h ∈ L∞(T ×BS) implies z ∈ N ε
S . Therefore, N ε

S is complete.

In the following two sections we give estimates of FS(z) and HS with
respect to the above (semi-)norms. In the end, these estimates imply that
z ↦ FS(z)+HS is a contractive self-mapping when we choose S sufficiently
large.

6.2.4 Estimates of HS

Here, we collect estimates of

HS = (Γ λ ∗ [f − χS curlu ∧ u])∣T×BS = (Γ λ ∗ [f + χSA(u)])∣T×BS .

Before we derive the required estimates, we establish the following lemma.
While its proof is elementary, it leads to the appearance of the term 1+S
in the definition of Nε

S(z) above.

Lemma 6.2.4. Let a ∈ R, b > 0 and S > 0. If y ∈ R with ∣y∣ ≤ 2S, then

e−s(a(x−y)) ≤ e4∣a∣ e−
s(ax)
1+S , (6.47)

e−b∣x−y∣ ≤ e2b e−
b∣x∣
1+S . (6.48)

Proof. First note that for ∣y∣ ≤ 2S we have
s(ay)
1 + S ≤

2∣a∣∣y∣
1 + S ≤

4∣a∣S
1 + S ≤ 4∣a∣.

Together with s(a(x − y)) ≥ s(ax) − s(ay), this implies

e−s(a(x−y)) ≤ e−
s(a(x−y))

1+S ≤ e−
s(ax)
1+S e

s(ay)
1+S ≤ e−

s(ax)
1+S e4∣a∣,

Similarly, we have ∣y∣/(1 + S) ≤ 2S/(1 + S) ≤ 2, which for b > 0 implies

e−b∣x−y∣ ≤ e−
b∣x−y∣
1+S ≤ e−

b∣x∣
1+S e

b∣y∣
1+S ≤ e−

b∣x∣
1+S e2b .

We have thus established (6.47) and (6.48).
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In the following two lemmas, we show that the norm of HS in bothMS

and N ε
S is bounded by a constant that is independent of S ≥ 2S0. Both

proofs strongly rely on the convolution estimates from Theorem 5.1.7 and
Theorem 5.2.8.

Lemma 6.2.5. There exists a constant C75 > 0 such that for all S ∈
[2S0,∞) we have

MS(HS) ≤ C75.

Proof. Clearly, f ∈ C∞0 (T ×R3) implies ∣f(t, x)∣ ≤ c0 for all (t, x) ∈ T ×R3.
Combining this with the decay estimates of u and ∇u from Theorem 6.1.9,
we thus obtain

∣Pf(x) + χS(x)A0(u)(x)∣ ≤ c1[(1 + ∣x∣)(1 + s(x))]
−5/2

, (6.49)
∣P�f(t, x) + χS(x)A⊥(u)(t, x)∣ ≤ c2(1 + ∣x∣)−9/2 (6.50)

for all (t, x) ∈ T ×R3, where A0 and A⊥ are defined in (6.36) and (6.37).
Exploiting the formulas (6.42) and (6.43) in combination with these esti-
mates, Theorem 5.1.7 and Theorem 5.2.8 directly imply

∣PHS(x)∣ ≤ c3[(1 + ∣x∣)(1 + s(x))]
−1
,

∣∂jPHS(x)∣ ≤ c4[(1 + ∣x∣)(1 + s(x))]
−3/2

,

∣P�HS(t, x)∣ ≤ c5(1 + ∣x∣)−3,
∣∂jP�HS(t, x)∣ ≤ c6(1 + ∣x∣)−4

for all t ∈ T and ∣x∣ ≥ S0. Collecting these, we arrive at the claimed
estimate.

Lemma 6.2.6. There exists a constant C76 > 0 such that for all S ∈
[2S0,∞) we have

Nε
S(HS) ≤ C76.

Proof. At first, consider x ∈ R3 with ∣x∣ ≥ 2S. For ∣y∣ ≤ 7S/4 we have

∣x − y∣ ≥ ∣x∣ − ∣y∣ ≥ ∣x∣ − 7S/4 ≥ ∣x∣ − 7∣x∣/8 = ∣x∣/8 ≥ S/4 ≥ S0/2.

From (5.61) and Lemma 6.2.4, we then conclude

∣∇φλ
0(x − y)∣ ≤ c0(∣x − y∣

−2 + ∣x − y∣−3/2s(λ(x − y))1/2) e−s(λ(x−y))/2

≤ c1(1 + ∣x − y∣−3/2(1 + s(λ(x − y)))
−3/2) e−s(λ(x−y))/4

≤ c2[(1 + ∣x − y∣)(1 + s(λ(x − y)))]
−3/2

e−
s(λx)
4(1+S) .
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In virtue of (6.49) and (6.44), we thus obtain

∣curlPHS(x)∣ = ∣ ∫
B7S/4

∇φλ
0(x − y) ∧ [Pf + χSA0(u)](y)dy∣

≤ c3 e−
s(λx)
4(1+S) ∫

R3

[(1 + ∣x − y∣)(1 + s(x − y))]−3/2[(1 + ∣y∣)(1 + s(y))]−5/2 dy

for ∣x∣ ≥ 2S ≥ 4S0. Estimating the remaining integral with the help of
Lemma A.2.2 and employing (6.46), we deduce

∣curlPHS(x)∣ ≤ c4 e−
s(λx)
4(1+S) ∣x∣−3/2 ≤ c5 e−

s(Kx)
1+S ∣x∣−3/2 (6.51)

for ∣x∣ ≥ 2S. If x ∈ R3 with S ≤ ∣x∣ ≤ 2S, then Lemma 6.2.5 yields

∣curlPHS(x)∣ ≤ c6∣∇PHS(x)∣ ≤ c7[(1 + ∣x∣)(1 + s(x))]
−3/2 ≤ c8∣x∣−3/2.

Since ∣x∣ ≤ 2S implies s(Kx)/(1+S) ≤ 2∣Kx∣/(1+S) ≤ 4∣K ∣S/(1+S) ≤ 4∣K ∣,
we have 1 ≤ e4∣K∣ e−s(Kx)/(1+S), so that (6.51) also holds for S ≤ ∣x∣ ≤ 2S.

Now let us turn to curlP�HS. From (5.66) and (6.48) we conclude

∫
T

∣∇φλ
⊥(t − s, x − y)∣ds ≤ c9∣x − y∣

−5/2
e−C58∣x−y∣

≤ c10∣x − y∣−5/2 e−
C58 ∣x−y∣

2 e−
C58 ∣x∣
2(1+S) ,

so that (6.50) and (6.45) lead to

∣curlP�HS(t, x)∣ ≤ c11 ∫
B7S/4

∫
T

∣∇φλ
⊥(t − s, x − y)∣ ∣P�f + χSA⊥(u)∣(s, y)dsdy

≤ c12 e−
C58 ∣x∣
2(1+S) ∫

R3

∣x − y∣−5/2 e−C58∣x−y∣/2(1 + ∣y∣)−9/2 dy.

The remaining integral can now be estimated with Lemma A.2.3. Further
using (6.46), we end up with

∣curlP�HS(t, x)∣ ≤ c13 e−
C58 ∣x∣
2(1+S) ∣x∣−9/2 ≤ c14 e−

s(Kx)
1+S ∣x∣−9/2+ε

for ∣x∣ ≥ S ≥ 2S0 and t ∈ T. A combination of this estimate with (6.51)
finishes the proof.
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6.2.5 Estimates of FS(z)
In the following two lemmas, we give estimates of

FS(z) = (Γ λ ∗ [ − (1 − χS) curl z ∧ z])∣T×BS = (Γ λ ∗ [(1 − χS)A(z)])∣T×BS ,

analogously to those previously established for HS. In contrast to HS, the
term F(z) depends on the (unknown) function z, which is why estimates
of differences for distinct arguments are also required for the fixed-point
argument. Note that, in order to eventually obtain a contractive mapping
for large S, we always factor out the term S−ε.
Lemma 6.2.7. There exists a constant C77 > 0 such that for all S ∈
[2S0,∞) and all z1, z2 ∈ MS we have

MS(FS(z1)) ≤ C77S
−εMS(z1)2, (6.52)

MS(FS(z1) − FS(z2)) ≤ C77S
−ε(MS(z1) +MS(z2))MS(z1 − z2). (6.53)

Proof. Let z ∈ MS and recall the definition of A0(z) and A⊥(z) in (6.36)
and (6.37). We immediately deduce

∣(1 − χS(x))A0(z)(x)∣ ≤ c0MS(z)2(1 − χS(x))[(1 + ∣x∣)(1 + s(x))]
−5/2

≤ c1S−εMS(z)2(1 + ∣x∣)−5/2+ε(1 + s(x))−5/2,
∣(1 − χS(x))A⊥(z)(t, x)∣ ≤ c2MS(z)2(1 − χS(x))(1 + ∣x∣)−9/2

≤ c3S−εMS(z)2(1 + ∣x∣)−9/2+ε

for ∣x∣ ≥ S. Recalling (6.38) and (6.39), from these estimates, Theorem
5.1.7 and Theorem 5.2.8 we conclude

∣PFS(z)(x)∣ ≤ c4S−εMS(z)2[(1 + ∣x∣)(1 + s(x))]
−1
,

∣∂jPFS(z)(x)∣ ≤ c5S−εMS(z)2[(1 + ∣x∣)(1 + s(x))]
−3/2

,

∣P�FS(z)(t, x)∣ ≤ c6S−εMS(z)2(1 + ∣x∣)−3,
∣∂jP�FS(z)(t, x)∣ ≤ c7S−εMS(z)2(1 + ∣x∣)−4.

Collecting these estimates, we arrive at (6.52). Estimate (6.53) follows in
the same fashion.
Lemma 6.2.8. There exists a constant C78 > 0 such that for all S ∈
[2S0,∞) and all z1, z2 ∈ N ε

S we have

Nε
S(FS(z1)) ≤ C78S

−εMS(z1)Nε
S(z1), (6.54)

Nε
S(FS(z1) − FS(z2)) ≤ C78S

−ε(∥z1∥N ε
S
+ ∥z2∥N ε

S
)∥z1 − z2∥N ε

S
, (6.55)

where ∥z∥N ε
S
=MS(z) +Nε

S(z).
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Proof. Let z ∈ N ε
S . Recalling the definition of ∥⋅∥N ε

S
, we then have

∣(1 − χS(x))A0(z)(x)∣

≤ c0MS(z)Nε
S(z)(1 − χS(x))∣x∣−5/2(1 + s(x))−1 e−

s(Kx)
1+S

≤ c1S−εMS(z)Nε
S(z)∣x∣

−5/2+ε(1 + s(x))−1 e−
s(Kx)
1+S ,

(6.56)

∣(1 − χS(x))A⊥(z)(t, x)∣

≤ c2MS(z)Nε
S(z)(1 − χS(x))∣x∣−9/2 e−

s(Kx)
1+S

≤ c3S−εMS(z)Nε
S(z)∣x∣

−9/2+ε
e−

s(Kx)
1+S

(6.57)

for ∣x∣ ≥ S. From (5.61) we conclude

∣∇φλ
0(x − y)∣ ≤ c4

⎧⎪⎪⎨⎪⎪⎩

∣x − y∣−2 e− s(λ(x−y))
4 if ∣x − y∣ ≤ S0,

[(1 + ∣x − y∣)s(λ(x − y))]−3/2 e− s(λ(x−y))
4 if ∣x − y∣ ≥ S0.

Therefore, exploiting the representation formula (6.40), we can employ
(6.56) to estimate

∣curlPFS(z)(x)∣ = ∣∫
R3

∇φλ
0(x − y) ∧ [(1 − χS(y))A0(z)(y)]dy∣

≤ c5S−εMS(z)Nε
S(z)(I1 + I2),

where

I1 ∶= ∫
BS∩BS0

(x)

∣x − y∣−2 e−
s(λ(x−y))

4 ∣y∣−5/2+ε(1 + s(y))−1 e−
s(Ky)
1+S dy,

I2 ∶= ∫
BS∩BS0(x)

[∣x − y∣s(λ(x − y))]−3/2 e−
s(λ(x−y))

4

× ∣y∣−5/2+ε(1 + s(y))−1 e−
s(Ky)
1+S dy.

To give estimates of these integrals, we first note that by the elementary
estimate s(λ(x − y)) ≥ s(λx) − s(λy) and (6.46), we have

e−
s(λ(x−y))

4 e−
s(Ky)
1+S ≤ e−

s(λx)
4(1+S) e

s(λy)
4(1+S) e−

s(Ky)
1+S ≤ e−

s(Kx)
1+S (6.58)

for all x, y ∈ R3. On the one hand, exploiting this estimate and that
∣x − y∣ ≤ S0 ≤ ∣x∣/2 implies ∣y∣ ≥ ∣x∣ − ∣x − y∣ ≥ ∣x∣ − S0 ≥ ∣x∣/2, we conclude

I1 ≤ c6 e−
s(Kx)
1+S ∣x∣−5/2+ε ∫

BS0
(x)

∣x − y∣−2 dy ≤ c7 e−
s(Kx)
1+S ∣x∣−3/2
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for ∣x∣ ≥ S ≥ 2S0. On the other hand, due to (6.58) and the fact that
∣y∣ ≥ S ≥ 2S0 implies ∣y∣ ≥ c8(1 + ∣y∣), we obtain

I2 ≤ c9 e−
s(Kx)
1+S ∫

R3

[(1 + ∣x − y∣)s(x − y)]−3/2(1 + ∣y∣)−5/2+ε(1 + s(y))−1 dy

≤ c10 e−
s(Kx)
1+S ∣x∣−3/2

by Lemma A.2.2. From the estimates of I1 and I2 we deduce

∣curlPFS(z)(x)∣ ≤ c11S−εMS(z)Nε
S(z) e−

s(Kx)
1+S ∣x∣−3/2.

Now let us turn to the purely periodic part P�FS(z). From (5.66) (with
q = 1 and γ = 1/4) we conclude

∫
T

∣∇φλ
⊥(t − s, x − y)∣ds ≤ c12∣x − y∣

−5/2
e−C58∣x−y∣ .

With formula (6.41) and estimate (6.57) we thus obtain

∣curlP�FS(z)(t, x)∣

= ∣∫
T
∫
R3

∇φλ
⊥(t − s, x − y) ∧ [(1 − χS(y))A⊥(z)(y)]dyds∣

≤ c13S−εMS(z)Nε
S(z)∫

BS

∣x − y∣−5/2 e−C58∣x−y∣ ∣y∣−9/2+ε e−
s(Ky)
1+S dy.

By (6.46) we have

e−
C58 ∣x−y∣

2 e−
s(Ky)
1+S ≤ e−s(K(x−y)) e−

s(Ky)
1+S ≤ e−

s(K(x−y))
1+S e−

s(Ky)
1+S ≤ e−

s(Kx)
1+S .

This yields

∣curlP�FS(z)(t, x)∣

≤ c14S−εMS(z)Nε
S(z) e−

s(Kx)
1+S ∫

R3

∣x − y∣−5/2 e−
C58 ∣x−y∣

2 (1 + ∣y∣)−9/2+ε dy.

Employing Lemma A.2.3 to estimate the remaining integral, we end up
with

∣curlP�FS(z)(t, x)∣ ≤ c15S−εMS(z)Nε
S(z) e−

Ks(Kx)
1+S ∣x∣−9/2+ε.

In total, we have thus shown (6.54). Estimate (6.55) is derived in the
same way.
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6.2.6 Spatial Decay Estimates
After the preparatory results from the previous subsection, we now prove
the existence of a function z ∈ N ε

S satisfying the fixed-point equation

z = FS(z) +HS

provided S ≥ 2S0 is chosen sufficiently large. Afterwards, we show unique-
ness of this fixed point in the function class MS. Since u∣T×BS is another
solution to this fixed-point equation and belongs toMS by Theorem 6.1.9,
we then conclude that z coincides with u∣T×BS . This yields the desired de-
cay rate of the vorticity field up to a factor ∣x∣−ε for the purely periodic
part. Returning to the representation formula (6.33), we can finally omit
this factor.

To begin with, for S ∈ [2S0,∞) consider the closed subset

BS ∶= {z ∈ N ε
S ∣ ∥z∥N ε

S
≤ C75 +C76 + 1}

of the Banach space N ε
S . Choose S1 ∈ [2S0,∞) so large that for all S ∈

[S1,∞) we have

(C77 +C78)(C75 +C76 + 1)2S−ε ≤ 1,

(C77 +C78)(C75 +C76 + 1)S−ε ≤
1

4
.

Then we obtain the following.

Corollary 6.2.9. For any S ∈ [S1,∞) there is a function zS ∈ BS with
zS = FS(zS) +HS.

Proof. We define the mapping

FS ∶ BS → BS, FS(z) ∶= FS(z) +HS.

By the Lemma 6.2.5, Lemma 6.2.6, Lemma 6.2.7 and Lemma 6.2.8 and
the choice of S1, this is a well-defined contractive self-mapping for any
S ≥ S1. The contraction mapping principle thus implies the existence of
a fixed point zS ∈ BS of FS, that is, of a function zS with the asserted
properties.

Next we show that this function zS coincides with u∣T×BS for S suffi-
ciently large in order to obtain the following intermediate result.
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6.2 The Vorticity Field in the Whole Space

Lemma 6.2.10. There exists S2 ∈ [S1,∞) such that for all S ∈ [S2,∞)
we have

∣curlPu(x)∣ ≤ (C75 +C76 + 1)∣x∣−3/2 e−
s(Kx)
1+S ,

∣curlP�u(t, x)∣ ≤ (C75 +C76 + 1)∣x∣−9/2+ε e−
s(Kx)
1+S

for all t ∈ T and x ∈ BS.

Proof. For S ≥ 2S0 we set US ∶= u∣T×BS . By Theorem 6.1.9 we know
US ∈ MS with MS(U) ≤ C64, and by (6.35) we have US = FS(US) + HS

for any S ≥ 2S0. Now let S ≥ S1 and let zS ∈ BS be the function from
Corollary 6.2.9. Then Lemma 6.2.7 implies

MS(zS −US) =MS(FS(zS) − FS(US))
≤ C77S

−ε(MS(zS) +MS(US))MS(zS −US)
≤ C77S

−ε(C75 +C76 + 1 +C64)MS(zS −US).

Choosing S2 ∈ [S1,∞) such that for all S ∈ [S2,∞) we have

C77S
−ε(C75 +C76 + 1 +C64) ≤

1

2
,

we conclude MS(zS − US) ≤ MS(zS − US)/2 and hence MS(zS − US) = 0
for all S ∈ [S2,∞). This implies zS = US = u∣T×BS . In particular, we have
Nε

S(u∣T×BS) = Nε
S(zS) ≤ C75 + C76 + 1 for all S ∈ [S2,∞). This completes

the proof.

Another application of the convolution formula (6.33) enables us to
omit the term ε in the estimate of curlP�u. We can thus prove the main
theorem of this chapter.

Theorem 6.2.11. Let λ ≠ 0 and f ∈ C∞0 (T×R3)3, and let u be a weak time-
periodic solution to (6.2) in the sense of Definition 6.1.1, which satisfies
(6.3). Then there exist constants C79 and α = α(λ,T ) > 0 such that the
estimates

∣curlPu(x)∣ ≤ C79(1 + ∣x∣)−3/2 e−αs(λx), (6.59)
∣curlP�u(t, x)∣ ≤ C79(1 + ∣x∣)−9/2 e−αs(λx) (6.60)

hold for all t ∈ T and x ∈ R3.
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6 Spatial Decay of Time-Periodic Solutions

Proof. We decompose u = v +w into steady-state part v ∶= Pu and purely
periodic part w ∶= P�u. By Lemma 6.1.7 we have curlu ∈ C∞(T × R3).
Therefore, curlu is bounded on T×BS2 with S2 from Lemma 6.2.10. Since
s(Kx)/(1 + S2) ≤ 2∣Kx∣/(1 + S2) ≤ 2∣K ∣ for ∣x∣ ≤ S2, we conclude

∣curl v(x)∣ ≤ c0(1 + ∣x∣)−3/2 e−
s(Kx)
1+S2 ,

∣curlw(t, x)∣ ≤ c1(1 + ∣x∣)−9/2+ε e−
s(Kx)
1+S2

for ∣x∣ ≤ S2. Combining these estimates with those from Lemma 6.2.10
(with S = S2), we deduce

∣curl v(x)∣ ≤ c2(1 + ∣x∣)−3/2 e−αs(λx),
∣curlw(t, x)∣ ≤ c3(1 + ∣x∣)−9/2+ε e−αs(λx)

(6.61)

for all (t, x) ∈ T×R3, where α = (λ(1+S2))−1K. In particular, this implies
(6.59), and for (6.60) it remains to remove ε in the second inequality. Due
to f ∈ C∞0 (T×R3) and Theorem 6.1.9, the estimates in (6.61) further yield

∣P�f(s, y) − curl v(y) ∧w(s, y) − curlw(s, y) ∧ v(y) − P�[curlw ∧w](s, y)∣
≤ c4(1 + ∣y∣)−9/2 e−αs(λy)

for all (t, x) ∈ T ×R3. Moreover, by Theorem 5.3.3 we have

∫
T

∣∇φλ
⊥(t − s, x − y)∣ds ≤ c5∣x − y∣

−5/2
e−C58∣x−y∣ .

Using these estimates in the representation formula (6.33), we conclude

∣curlw(t, x)∣ ≤ c6∫
R3

∣x − y∣−5/2 e−C58∣x−y∣(1 + ∣y∣)−9/2 e−αs(λy) dy.

Due to 2s(Kx) ≤ C58∣x∣, we have

1

2
C58∣x − y∣ + αs(λy) ≥ s(K(x − y)) +

s(Ky)
1 + S2

≥ s(Kx)
1 + S2

= αs(λx),

and we can obtain

∣curlw(t, x)∣ ≤ c7 e−αs(λx)∫
R3

∣x − y∣−5/2 e−C58∣x−y∣/2(1 + ∣y∣)−9/2 dy.

We estimate the remaining integral with Lemma A.2.3, which leads to

∣curlw(t, x)∣ ≤ c8 e−αs(λx) ∣x∣−9/2.

Since w ∈ C∞(T ×R3), this shows (6.60) and completes the proof.
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6.3 Spatial Decay in an Exterior Domain
Here we consider some applications of the previous results to the case of a
Navier–Stokes flow in an exterior domain in two different configurations.
First, we consider a time-periodic flow past a body moving inside a fixed
region. By means of a cut-off procedure, we show that the corresponding
velocity and vorticity fields show the same decay properties as we estab-
lished in Theorem 6.1.9 and Theorem 6.2.11 for a flow in the whole space.
Secondly, we consider the flow past a rotating body, which can be seen
as a special case of the previous problem, but we consider steady-state
solutions in a frame attached to the body. By means of a suitable coor-
dinate transform, we reduce this problem to the previous one and derive
asymptotic properties.

6.3.1 Time-Periodic Flow Past a Moving Body
Here we consider the viscous flow past a body B that moves inside the
three-dimensional whole space. Let Ω(t) denote the region occupied by
the fluid at time t ∈ R. The flow past B is then governed by the equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(∂tv + v ⋅ ∇v) = µ∆v −∇p in ⋃
t∈R
{t} ×Ω(t),

div v = 0 in ⋃
t∈R
{t} ×Ω(t),

lim
∣x∣→∞

v(t, x) = v∞ for t ∈ R.

(6.62)

Here v and p denote velocity field and pressure field, and v∞ denotes a
constant inflow velocity “at infinity”. Moreover, µ and ρ denote constant
viscosity and density of the fluid. In the following, we only consider the
case v∞ ≠ 0 and, by a simple change of coordinates, we may assume that
v∞ is directed along the negative x1 axis, that is, v∞ = −∣v∞∣ e1. Moreover,
we assume that the motion of the body B takes place in a bounded region,
say, inside the ball BR1 for a fixed radius R1 > 0, and that the fluid flow
exterior of this region is time periodic, that is,

v(t + T , x) = v(t, x), p(t + T , x) = p(t, x) for (t, x) ∈ R ×BR1 .

For example, this situation occurs when the body B oscillates or rotates
with fixed angular velocity. Observe that we did not specify any boundary
conditions of v at the boundary ∂Ω(t), and to ensure existence of a time-
periodic solution (v, p) these would have to be suitably chosen. However,
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6 Spatial Decay of Time-Periodic Solutions

these boundary values are not relevant for the result presented here, and
we restrict our consideration to the functions on the set R × BR1 in the
following. Moreover, since v and p are time periodic on this domain, we
can transform the equations into a torus setting.

We introduce non-dimensional coordinates. Let ∣v∞∣ serve as a char-
acteristic velocity, and let the diameter d of the body B serve as a char-
acteristic length. We define the Reynolds number λ ∶= ρd∣v∞∣/µ, and the
non-dimensional space and time variables x′ = x/d and t′ = µt/(ρd2). The
corresponding radius and time period are R0 = R1/d and T ′ = µT /(ρd2).
Recall the quotient mapping π∶R→ T for T = R/T ′Z and the correspond-
ing representation mapping Π∶T → [0,T ′). We introduce the dimension-
less velocity u and pressure p by

u(t′, x′) = ρd
µ
(v(Π(t), x) − v∞), p(t′, x′) = ρd

2

µ
p(Π(t), x).

for (t′, x′) ∈ T ×BR0 . Omitting the primes, from (6.62) we then obtain

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tu − λ∂1u + u ⋅ ∇u =∆u −∇p in T ×BR0 ,

divu = 0 in T ×BR0 ,

lim
∣x∣→∞

u(t, x) = 0 for t ∈ T.
(6.63)

Clearly, spatially asymptotic properties of u are equally valid for v. We
thus restrict our investigation to (6.63), for which we obtain the following
theorem.

Theorem 6.3.1. Let λ ≠ 0 and let (u,p) be a solution to (6.63), and
assume that there exists R > R0 such that (u,p) ∈ C∞(T ×BR)3+1 and

u ∈ L2(T;D1,2(BR))3, Pu ∈ L6(BR)3, P�u ∈ L∞(T; L2(BR))3.

Then there exists a constant C80 > 0 and α > 0 such that

∣Pu(x)∣ ≤ C80[∣x∣(1 + s(λx))]
−1
, ∣P�u(t, x)∣ ≤ C80∣x∣−3,

∣∇Pu(x)∣ ≤ C80[∣x∣(1 + s(λx))]
− 3

2 , ∣∇P�u(t, x)∣ ≤ C80∣x∣−4,
∣curlPu(x)∣ ≤ C80∣x∣−3/2 e−αs(λx), ∣curlP�u(t, x)∣ ≤ C80∣x∣−9/2 e−αs(λx)

for all t ∈ T and x ∈ BR.
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Proof. Clearly, the asserted estimates hold for t ∈ T and R ≤ ∣x∣ ≤ 3R
since u is smooth. Let χ ∈ C∞0 (R3) be a cut-off function with χ(x) = 1 for
∣x∣ ≤ 2R and χ(x) = 0 for ∣x∣ ≥ 3R. We set

w ∶= (1 − χ)u +B(u ⋅ ∇χ), q ∶= (1 − χ)p,

where B denotes the Bogovskiĭ operator from Theorem 2.4.2. From the
regularity assumptions on (u,p) we conclude (w,q) ∈ C∞(T ×R3)3+1 and

w ∈ L2(T;D1,2(R3))3, Pw ∈ L6(R3)3, P�w ∈ L∞(T; L2(R3))3.

Moreover, (w,q) satisfies

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tw − λ∂1w +w ⋅ ∇w =∆w −∇q + f in T ×R3,

divw = 0 in T ×R3,

lim
∣x∣→∞

w(t, x) = 0 for t ∈ T

for a function f ∈ C∞0 (T × R3). In view of Remark 6.1.4, w satisfies the
assumptions of Theorem 6.1.9 and Theorem 6.2.11 and is therefore subject
to the pointwise estimates given there. Since u = w for ∣x∣ ≥ 3R, this shows
the asserted estimates for u and completes the proof.

6.3.2 Steady-State Flow Around a Rotating Body
As a consequence of Theorem 6.3.1 we can derive decay properties of the
solutions to the equations

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ω(e1 ∧u − e1 ∧x ⋅ ∇u) − λ∂1u + u ⋅ ∇u =∆u −∇p in Ω,

divu = 0 in Ω,

lim
∣x∣→∞

u(x) = 0,
(6.64)

which describe the steady flow of a Navier–Stokes fluid around a body
that translates with constant velocity λ e1, λ > 0, and rotates about the
translation axis with angular velocity ω > 0. Here Ω is the exterior domain
occupied by the fluid flow. The functions u∶Ω→ R3 and p∶Ω→ R describe
corresponding steady-state velocity and pressure fields. We conclude the
following theorem that establishes pointwise estimates of weak solutions
to (6.64).
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6 Spatial Decay of Time-Periodic Solutions

Theorem 6.3.2. Let (u,p) ∈ (L6(Ω)3 ∩D1,2(Ω)3) × L2
loc(Ω) be a distribu-

tional solution to (6.64), that is, (u,p) satisfies divu = 0 and

0 = ∫
Ω

[∇u ∶ ∇ψ + (ω(e1 ∧u − e1 ∧x ⋅ ∇u) − λ∂1u + u ⋅ ∇u) ⋅ ψ − pdivψ]dx

for all ψ ∈ C∞0 (Ω)3. Further assume e1 ∧u− e1 ∧x ⋅ ∇u ∈ L2(Ω)3. For every
R > δ(Ωc) there exists a constant C81 > 0 such that

∣u(x)∣ ≤ C81[∣x∣(1 + s(λx))]
−1
,

∣∇u(x)∣ ≤ C81[∣x∣(1 + s(λx))]
− 3

2 ,

∣curlu(x)∣ ≤ C81∣x∣−3/2 e−αs(λx)

for all x ∈ BR.
Proof. Let R > R0 > δ(Ωc) and let

Qω(t) ∶=
⎛
⎜
⎝

1 0 0
0 cos(ωt) − sin(ωt)
0 sin(ωt) cos(ωt)

⎞
⎟
⎠

be the matrix corresponding to the rotation with angular velocity ω e1.
Define the new variable y = Qω(t)x and set

U(t, y) ∶= Qω(t)u(Qω(t)⊺y), P(t, y) ∶= p(Qω(t)⊺y)
for all t ∈ R and ∣y∣ ≥ R0. Then U and P are time periodic with period
T = 2π/ω, and we can identify them with functions on T × BR0 , where
T = R/T Z denotes the corresponding torus group. By the regularity result
[42, Theorem XI.1.2], we have (u,p) ∈ C∞(Ω)3+1, which implies (U,P) ∈
C∞(T ×BR0)3+1. Due to the identity

∂tU(t, y) = ωQω(t)( e1 ∧u(x) − e1 ∧x ⋅ ∇u(x)), (6.65)

with y = Qω(t)⊺x, the pair (U,P) satisfies

{
∂tU − λ∂1U +U ⋅ ∇U =∆U −∇P in T ×BR0 ,

divU = 0 in T ×BR0 .

Moreover, U and P are smooth and

∫
T
∫
BR

∣∇U(t, x)∣2 dxdt = ∫
T
∫
BR

∣∇u(Qω(t)⊺x)∣2dxdt ≤ ∣u∣21,2,

∫
BR

∣PU(t, x)∣6 dxdt ≤ ∫
T
∫
BR

∣u(Qω(t)⊺x)∣6 dxdt ≤ ∥u∥66.
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This implies U ∈ L2(T;D1,2(BR))3 and PU ∈ L6(BR)3. By (6.65), the
assumption e1 ∧u − e1 ∧x ⋅ ∇u ∈ L2(Ω)3 implies ∂tU ∈ L2(T; L2(Ω))3 and
thus P�U ∈ L∞(T; L2(Ω))3. By Theorem 6.3.1 we thus conclude

∣U(t, x)∣ ≤ c0[∣x∣(1 + s(λx))]
−1
,

∣∇U(t, x)∣ ≤ c1[∣x∣(1 + s(λx))]
− 3

2 ,

∣curlU(t, x)∣ ≤ c2∣x∣−3/2 e−αs(λx)

for all (t, x) ∈ T ×BR. The asserted estimates for u follow by a change of
coordinates back to the frame attached to the body.
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A.1 Estimates of Specific Functions

A.1.1 Hankel Functions
For ν ∈ C the Hankel functions H(1)ν and H

(2)
ν of first and second kind

are two particular linearly independent solutions to the Bessel differential
equation

x2
d2

dx2
H
(j)
ν (x) + x

d

dx
H
(j)
ν (x) + (x2 − ν2)H(j)ν (x) = 0.

They are given by H
(1)
ν = Jν + iYν and H

(2)
ν = Jν − iYν , where Jν and Yν

are the Bessel functions of first and second kind, given by

Jν(x) =
∞
∑
m=0

(−1)m
m! Γ(m + ν + 1)(

x

2
)2m+ν
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and
Yν(x) = lim

µ→ν

Jµ(x) cos(µπ) − J−µ(x)
sin(µπ) .

Note that the limit in the last identity can be omitted if ν is not an integer.
Moreover, the modified Bessel functions Iν and Kν are defined by

Iν(x) =
∞
∑
m=0

1

m! Γ(m + ν + 1)(
x

2
)2m+ν ,

and
Kν(x) = lim

µ→ν

π

2

I−µ(x) − Iµ(x)
sin(µπ) .

In the following, we focus in the study of the Hankel functions. First, we
collect some of their well known properties.

Lemma A.1.1. Hankel functions H(j)ν , j = 1,2, are analytic in C ∖ {0}
with

∀ν ∈ C ∀z ∈ C ∖ {0} ∶ d

dz
H
(j)
ν (z) =H(j)ν−1(z) −

ν

z
H
(j)
ν (z), (A.66)

and they satisfy the following estimates:

∀ν ∈ C∀ε > 0∃C82 > 0∀∣z∣ ≥ ε ∶ ∣H(j)ν (z)∣ ≤ C82 ∣z∣−
1
2 e(−1)

j Im z, (A.67)

∀ν ∈ C+∀R > 0∃C83 > 0∀∣z∣ ≤ R ∶ ∣H(j)ν (z)∣ ≤ C83 ∣z∣−ν , (A.68)

∀0 ≤ R < 1∃C84 > 0∀∣z∣ ≤ R ∶ ∣H(j)0 (z)∣ ≤ C84 ∣log(∣z∣)∣. (A.69)

Proof. The recurrence relation (A.66) is a well-know property of various
Bessel functions; see for example [1, 9.1.27]. We refer to [1, 9.2.3] for
the asymptotic behavior (A.67) of H(j)ν (z) as ∣z∣ → ∞, and to [1, 9.1.9
and 9.1.8] for the asymptotic behavior (A.68) and (A.69) of H(j)ν (z) as
∣z∣ → 0.

Next we study the function x ↦ H
(j)
ν (a∣x∣) for x ∈ Rn, n ≥ 2 and a

parameter a ∈ C. We first derive a general formula for its derivative,
which is based on the recurrence relation (A.66).

Lemma A.1.2. Let ν, a ∈ C, n ∈ N and α ∈ Nn
0 . Then

Dα[H(j)ν (a∣x∣)] =
1

∣x∣2∣α∣
∣α∣

∑
`=0
pα,`(x)(a∣x∣)

`
H
(j)
ν−`(a∣x∣) (A.70)

for all x ∈ Rn ∖ {0}, where pα,`∶Rn → R are polynomials in x, independent
of a, such that deg pα,` ≤ ∣α∣.
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Proof. We show the statement inductively. For α = 0, there is nothing to
do. So assume that representation (A.70) holds for some α ∈ Nn

0 . Then we
compute

∂mD
α[H(j)ν (a∣x∣)]

=
∣α∣

∑
`=0
[−2∣α∣xmpα,`(x)

∣x∣2∣α∣+2
(a∣x∣)`H(j)ν−`(a∣x∣) +

∂mpα,`(x)
∣x∣2∣α∣

(a∣x∣)`H(j)ν−`(a∣x∣)

+ pα,`(x)
∣x∣2∣α∣

`(a∣x∣)` xm
∣x∣2

H
(j)
ν−`(a∣x∣) +

pα,`(x)
∣x∣2∣α∣

(a∣x∣)`( d
dz
H
(j)
ν−`)(a∣x∣)

axm
∣x∣ ]

=
∣α∣

∑
`=0
[[ + ∂mpα,`(x)∣x∣2 + (` − ν − 2∣α∣)pα,`(x)xm](a∣x∣)

`
H
(j)
ν−`(a∣x∣)

+ pα,`(x)xm(a∣x∣)
`+1
H
(j)
ν−`−1(a∣x∣)]

1

∣x∣2∣α∣+2
,

where we used the recurrence relation (A.66). Therefore, the function
∂mDα[H(j)ν (a∣x∣)] is of the claimed form, and the assertion follows by
induction.

A combination of Lemma A.1.2 with the asymptotic behavior from
(A.67) leads to the following decay estimate.

Lemma A.1.3. Let ν ∈ C, n ∈ N, k ∈ N0 and δ, ε > 0. Then there exists a
constant C85 = C85(n, k, ν, δ, ε) > 0 such that

∣∇k[H(j)ν (a∣x∣)]∣ ≤ C85∣a∣k−
1
2 ∣x∣−

1
2 e(−1)

j ∣x∣ Ima (A.71)

for all x ∈ Rn with ∣x∣ ≥ ε and a ∈ C with ∣a∣ ≥ δ.

Proof. For ∣a∣ ≥ δ and ∣x∣ ≥ ε we have ∣a∣x∣∣ ≥ δε > 0. Therefore, by (A.67)
we can estimate

∣H(j)ν (a∣x∣)∣ ≤ c0∣a∣x∣∣
− 1

2 e(−1)
j ∣x∣ Ima .

From equation (A.70) we now obtain

∣∇k[H(j)ν (a∣x∣)]∣ ≤ C85∣x∣−k(∣a∣ ∣x∣)
− 1

2 e(−1)
j ∣x∣ Ima

k

∑
`=0
(∣a∣ ∣x∣)`.

Due to ∣a∣∣x∣ ≥ δε, the final sum is bounded by a constant multiple of
(∣a∣∣x∣)k. This shows (A.71).
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A.1.2 A Function with Anisotropic Decay
This section is dedicated to the study of the function

ga,b∶Rn ∖ {0} → R, ga,b(x) ∶= ∣x∣a ebx1 (A.72)

for parameters a, b ∈ R and n ∈ N. To derive a formula for the derivatives
of ga,b, we further define the function h = (h1, . . . , hn) by

h∶Rn ∖ {0} → Rn, h(x) = ax
∣x∣2
+ b e1 .

Then a simple calculation shows

∂jga,b(x) = a∣x∣a−2xj ebx1 +∣x∣abδ1j ebx1 = hj(x)ga,b(x). (A.73)

For higher derivatives we obtain the following representation.

Lemma A.1.4. Let a, b ∈ R, n ∈ N and α ∈ Nn
0 . Then

Dαga,b(x) = ∑
β≤α

pβ(x)
∣x∣2∣β∣

hα−β(x)ga,b(x) (A.74)

for all x ∈ Rn ∖ {0}, where pβ ∶Rn → R are polynomials in x such that
deg pα,` ≤ ∣β∣. Here, hγ = hγ11 ⋯h

γn
n .

Proof. We show the statement inductively. For α = 0, there is nothing to
do. So assume that representation (A.74) holds for some α ∈ Nn

0 . Then
with (A.73) we compute

∂jD
αga,b(x)

= ∑
β≤α
[∂jpβ(x)
∣x∣2∣β∣

hα−β(x)ga,b(x) +
−2∣β∣xjpβ(x)
∣x∣2∣β∣+2

hα−β(x)ga,b(x)

+ pβ(x)
∣x∣2∣β∣

(
n

∑
k=1
(αk − βk)hα−β−ek(x)∂jhk(x)ga,b(x) + hα−β(x)∂jga,b(x))]

= ∑
ej≤β≤α+ej

∂jpβ−ej(x)∣x∣
2 − 2(∣β∣ − 1)xjpβ−ej(x)
∣x∣2∣β∣

hα+ej −β(x)ga,b(x)

+
n

∑
k=1

∑
β≥ej + ek

β≤α+ej + ek

(αk − βk + δjk + 1)
pβ−ej − ek(x)
∣x∣2∣β∣−4

∂jhk(x)hα+ej −β(x)ga,b(x)

+ ∑
β≤α

pβ(x)
∣x∣2∣β∣

hα+ej −β(x)ga,b(x).
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Using now the identity

∂jhk(x) =
a∣x∣2δjk − 2axjxk

∣x∣4
,

we see that ∂jDαga,b(x) has the desired form, and the assertion follows by
induction.

Identity (A.74) gives rise to the following estimate.
Lemma A.1.5. Let a, b ∈ R, n ∈ N, k ∈ N0 and ε > 0. Then there exists a
constant C86 = C86(n, k, a, b, ε) > 0 such that

∣∇kga,b(x)∣ ≤ C86∣x∣a ebx1 (A.75)

for all x ∈ Rn with ∣x∣ ≥ ε.
Proof. Since ∣h(x)∣ ≤ c0 for ∣x∣ ≥ ε, formula (A.74) implies

∣∇kga,b(x)∣ ≤ c1
k

∑
`=0
∣x∣−`∣ga,b(x)∣ ≤ c2∣ga,b(x)∣ ≤ c3∣x∣a ebx1

for ∣x∣ ≥ ε. This shows the statement.

A.2 Convolutions
A.2.1 Derivatives of Convolutions
Lemma A.2.1. Let f, g ∈ L1

loc(Rn) ∩C0(Rn ∖{0}), and assume that there
exists R > 0 and α, β > 0 with α + β > n such that

sup
x∈BR

∣x∣α∣f(x)∣ + ∣x∣β ∣g(x)∣ < ∞. (A.76)

Then the convolution integral

f ∗ g(x) = ∫
Rn

f(x − y)g(y)dy

is well defined for x ≠ 0 and f ∗g ∈ L1
loc(Rn). If additionally g ∈W1,1

loc(Rn)∩
C1(Rn ∖ {0}) and there exists γ > 0 with α + γ > n such that

sup
x∈BR

∣x∣γ ∣∇g(x)∣ < ∞, (A.77)

then f ∗ g ∈ C1(Rn ∖ {0}) and

∂j(f ∗ g)(x) = (f ∗ ∂jg)(x) = ∫
Rn

f(x − y)∂jg(y)dy (j = 1, . . . , n).
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Proof. First note that by continuity of f and g in Rn∖{0}, property (A.76)
holds for all R > 0. For x ≠ 0 we set R = ∣x∣/2. Then both f and g are
continuous and thus bounded on the closure of BR(x), which yields

∫
BR(0)

∣f(x − y)∣ ∣g(y)∣dy ≤ sup
z∈BR(x)

∣f(z)∣ ∫
BR(0)

∣g(y)∣dy < ∞,

∫
BR(x)

∣f(x − y)∣ ∣g(y)∣dy ≤ sup
y∈BR(x)

∣g(y)∣ ∫
BR(0)

∣f(z)∣dz < ∞.

Moreover, because y ∈ BR(0) ∩ BR(x) implies ∣y∣ ≤ ∣x − y∣ + ∣x∣ ≤ 3∣x − y∣,
from (A.76) we deduce

∫
BR(0)∩BR(x)

∣f(x − y)∣ ∣g(y)∣dy ≤ c0 ∫
BR(0)∩BR(x)

∣x − y∣−α∣y∣−β dy

≤ c1 ∫
BR(0)∩BR(x)

∣y∣−α−β dy < ∞

since α + β > n. Collecting these integrals, we conclude

∫
Rn

∣f(x − y)∣ ∣g(y)∣dy < ∞,

so that the convolution integral f ∗g(x) exists for all x ≠ 0. Now let R0 > 0
be arbitrary. Then we have

∫
BR0

∣f ∗ g(x)∣dx ≤ ∫
BR0

∫
Rn

∣f(x − y)∣ ∣g(y)∣dydx

= ∫
B2R0

∫
BR0

∣f(x − y)∣ ∣g(y)∣dxdy + ∫
B2R0

∫
BR0

∣f(x − y)∣ ∣g(y)∣dxdy.

Since ∣x∣ ≤ R0 and ∣y∣ ≤ 2R0 implies ∣x − y∣ ≤ 3R0, the first integral can be
estimated by

∫
B2R0

∫
BR0

∣f(x − y)∣ ∣g(y)∣dxdy ≤ ∫
B3R0

∣f(z)∣dz ∫
B2R0

∣g(y)∣dy < ∞.

Moreover, since ∣x∣ ≤ R0 and ∣y∣ ≥ 2R0 implies ∣x − y∣ ≥ ∣y∣ − ∣x∣ ≥ ∣y∣ −R0 ≥
∣y∣/2 ≥ R0, we can employ (A.76) to estimate the second integral by

∫
B2R0

∫
BR0

∣f(x − y)∣ ∣g(y)∣dxdy ≤ c2 ∫
B2R0

∫
BR0

∣x − y∣−α ∣y∣−β dxdy

≤ c3 ∫
B2R0

∫
BR0

∣y∣−α ∣y∣−β dxdy = c3∣BR0 ∣ ∫
B2R0

∣y∣−α−β dy < ∞,
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which follows from α + β > n. In total, this shows f ∗ g ∈ L1
loc(Rn).

Now assume g ∈W1,1
loc(Rn) ∩C1(Rn ∖{0}) and (A.77). With exactly the

same argument as above we see that the convolution integral f ∗ ∂jg(x)
exists for x ≠ 0. Now let ε, ρ > 0 and h ∈ R ∖ {0}, and consider

1

h
(f ∗ g(x + h ej) − f ∗ g(x)) − f ∗ ∂jg(x)

= ∫
Rn

f(x − y)[1
h
(g(y + h ej) − g(y)) − ∂jg(y)]dy = I1 + I2 + I3

for x ≠ 0, where we set

I1 ∶= ∫
Bδ

f(x − y)[
1

∫
0

∂jg(y + sh ej)ds − ∂jg(y)]dy,

I2 ∶= ∫
Bρ

f(x − y)[
1

∫
0

∂jg(y + sh ej)ds − ∂jg(y)]dy,

I3 ∶= ∫
Bρ∖Bδ

f(x − y)[
1

∫
0

∂jg(y + sh ej)ds − ∂jg(y)]dy.

For δ ≤ R = ∣x∣/2 we obtain

∣I1∣ ≤ sup
z∈BR

∣f(z)∣ ( ∫
Bδ+∣h∣

∣∂jg(y)∣dy + ∫
Bδ

∣∂jg(y)∣dy)

≤ 2 sup
z∈BR

∣f(z)∣ ∫
Bδ+∣h∣

∣∂jg(y)∣dy.

If we choose δ sufficiently small and ∣h∣ ≤ δ, we thus have ∣I1∣ ≤ ε/3.
Moreover, for ρ ≥ 4R = 2∣x∣ and ∣h∣ ≤ ρ/2 we exploit (A.76) and (A.77) and
utilize that ∣y∣ ≥ ρ implies ∣x − y∣ ≥ ∣y∣ − ∣x∣ ≥ ∣y∣/2 to estimate

∣I2∣ ≤ c4
1

∫
0

∫
Bρ

∣x − y∣−α∣y + sh ej ∣−γ dsdy + ∫
Bρ

∣x − y∣−α∣y∣−γ dy

≤ c5 ∫
Bρ−∣h∣

∣y∣−α−γ dy.

Therefore, we obtain ∣I2∣ ≤ ε/3 for ρ sufficiently large. Furthermore, due
to f(x − ⋅) ∈ L1(Bρ ∖ Bδ) and ∂jg ∈ C(Bρ ∖ Bδ) with ρ < δ as above, the
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dominated convergence theorem yields lim∣h∣→∞ I3 = 0, that is, ∣I3∣ ≤ ε/3
for ∣h∣ sufficiently small. In total, we obtain

∣1
h
(f ∗ g(x + h ej) − f ∗ g(x)) − f ∗ ∂jg(x)∣ ≤ ε

for ∣h∣ sufficiently small, which implies ∂j(f ∗ g) = f ∗ ∂jg in Rn ∖ {0}. By
the same argument as above, we further obtain ∂j(f ∗g) ∈ L1

loc(Rn), which
completes the proof.

A.2.2 Estimates of Convolutions
The following convolution estimate treats functions with decay estimates
that include the anisotropic function s(x) ∶= ∣x∣ + x1. As establishing such
kind of estimates is a cumbersome work, we do not give a proof here.

Lemma A.2.2. Let A ∈ (2,∞), B ∈ [0,∞) with A +min{1,B} > 3. Then
there exists C87 = C87(A,B) > 0 such that for all x ∈ R3 it holds

∫
R3

[(1 + ∣x − y∣)(1 + s(x − y))]−3/2(1 + ∣y∣)−A(1 + s(y))−B dy

≤ C87(1 + ∣x∣)−3/2.

Proof. We refer to [71, Proof of Theorem 3.2].

We also need the following lemma treating convolutions of homogeneous
functions.

Lemma A.2.3. Let A ∈ (0,3), B ∈ (0,∞), α ∈ (0,∞). Then there exists
a constant C88 = C88(A,B,α) > 0 such that for all x ∈ R3 ∖ {0} it holds

∫
R3

∣x − y∣−A e−α∣x−y∣(1 + ∣y∣)−B dy ≤ C88∣x∣−B.

Proof. We split the integral into two parts

I1 ∶= ∫
B∣x∣/2(x)

∣x − y∣−A e−α∣x−y∣(1 + ∣y∣)−B dy,

I2 ∶= ∫
B∣x∣/2(x)

∣x − y∣−A e−α∣x−y∣(1 + ∣y∣)−B dy,
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which we estimate separately. On the one hand, since ∣x − y∣ ≤ ∣x∣/2 implies
∣y∣ ≥ ∣x∣ − ∣x − y∣ ≥ ∣x∣/2, we have

I1 ≤ c0(1 + ∣x∣)−B ∫
R3

∣x − y∣−A e−α∣x−y∣ dy ≤ c1(1 + ∣x∣)−B ≤ c2∣x∣−B,

where the integral is finite due to A < 3. On the other hand, for the second
integral we directly obtain

I2 ≤ c3 e−α∣x∣/4∫
R3

e−α∣x−y∣/2 dy ≤ c4 e−α∣x∣/4 ≤ c5∣x∣−B

for all x ≠ 0. This completes the proof.

A.3 Classical Fourier Analysis

A.3.1 Fourier Transforms of Elementary Functions
Here we provide properties of Fourier transforms of specific functions that
are occasionally encountered in the course of this thesis.

Proposition A.3.1. For α ∈ (0,1) and s ∈ [1,∞) define

ϕα ∶=F −1
T [k ↦ (1 − δZ(k))∣k∣

−α]. (A.78)

Then ϕα ∈ Ls,∞(T) if s ≤ 1/(1 − α), and ϕα ∈ Ls(T) if s < 1/(1 − α).

Proof. We choose (−T2 , T2 ] as a representation of T = R/T Z. Then we have
ϕα(t) = c0∣t∣α−1 + hα(t) for some function hα ∈ C∞(T); see [56, Example
3.1.19] for example. This directly yields the claim.

Proposition A.3.2. Let n ∈ N. For β ∈ (0, n) and s ∈ [1,∞) define

ψβ ∶=F −1
Rn[ξ ↦ (1 + ∣ξ∣2)−β/2]. (A.79)

Then ψβ ∈ Ls,∞(Rn) if s ≤ n/(n − β), and ψβ ∈ Ls(Rn) if s < n/(n − β).

Proof. We have

0 < ψβ(x) ≤ c0χ(0,2)(∣x∣)∣x∣β−n + c1χ[2,∞)(∣x∣) e−∣x∣/2;

see [57, Proposition 6.1.5] for example. This directly yields the claim.
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6 Spatial Decay of Time-Periodic Solutions

A.3.2 The Marcinkiewicz Multiplier Theorem
There are several theorems, which nowadays belong to the standard reper-
toire in Fourier analysis and give sufficient conditions for a function m to
be an Lp multiplier in the Euclidean setting G = Rn. One of these is the
Marcinkiewicz Multiplier Theorem, which can be applied to functions that
are sufficiently regular away from the coordinate axes in Rn, that is, on
the set

Rn
c ∶= {x = (x1, . . . , xn) ∈ Rn ∣ xj ≠ 0 for at least two j ∈ {1, . . . , n}}.

Theorem A.3.3 (Marcinkiewicz Multiplier Thereom). Let n ∈ N, and let
m ∈ Cn(Rn

c ) be a bounded function such that

A ∶= sup
α∈{0,1}n

sup
ξ∈Rn

c

∣ξαDα
ξm(ξ)∣ < ∞. (A.80)

Then m is an Lp(Rn) multiplier for any p ∈ (1,∞), and

∥opRn[m]∥L(Lp(Rn)) ≤ C89A

for some constant C89 = C89(n, p) > 0.

Proof. A proof can be found in [56, Corollary 5.2.5] for example.

A simple consequence is the Lp continuity of the Riesz transforms.

Proposition A.3.4 (Riesz Transform). For j ∈ {1, . . . , n} let Rj denote
the Riesz transform given by

Rj ∶S (Rn) →S ′(Rn), Rj(f) ∶=F −1
Rn[
−iξj
∣ξ∣ FRn(f)]. (A.81)

Then Rj can be extended to a continuous linear operator Rj ∈ L(Lp(Rn))
for any p ∈ (1,∞).

Proof. This is a direct consequence of Theorem A.3.3. For a different
proof see [56, Corollary 4.2.8] for example.

A.3.3 Some Multipliers
Here we study specific functions and there properties as Fourier multipli-
ers. To begin with, let χ ∈ C∞0 (R; [0,1]) be a cut-off function with

χ(η) = 1 for ∣η∣ ≤ 1

2
, χ(η) = 0 for ∣η∣ ≥ 1. (A.82)
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Let λ ∈ R and T > 0. For θ ∈ [0,1] and h = 1, . . . , n we define

m0∶R ×Rn → C, m0(η, ξ) ∶=
(1 − χ(η))∣η∣θ(1 + ∣ξ∣2)1−θ

∣ξ∣2 + i(2πT η − λξ1)
, (A.83)

mh∶R ×Rn → C, mh(η, ξ) ∶=
(1 − χ(η))∣η∣θ(1 + ∣ξ∣2)

1
2
−θ
iξh

∣ξ∣2 + i(2πT η − λξ1)
. (A.84)

In order to show that these functions really define Lq(R×Rn) multipliers,
we first give a lower bound of the denominator

Nλ(η, ξ) ∶= ∣ξ∣2 + i(
2π

T η − λξ1).

Lemma A.3.5. There is a constant C90 = C90(T , λ) > 0 such that

∣Nλ(η, ξ)∣ ≥ C90(1 + ∣η∣ + ∣ξ∣2) (A.85)

for all (η, ξ) ∈ R ×Rn with ∣η∣ ≥ 1
2 .

Proof. First note that we trivially have ∣Nλ(η, ξ)∣ ≥ ∣ξ∣2. Moreover, for
λ = 0 we obtain ∣Nλ(η, ξ)∣ ≥ 2π

T ∣η∣ ≥ π
2T (1 + 2∣η∣), so that (A.85) follows

immediately in this case. Now consider λ ≠ 0. For ∣λ∣∣ξ∣ ≤ π
T ∣η∣ we have

∣Nλ(η, ξ)∣ ≥ ∣
2π

T η − λξ1∣ ≥
2π

T ∣η∣ − ∣λ∣∣ξ∣ ≥
π

T ∣η∣ ≥
π

4T (1 + 2∣η∣),

and for ∣λ∣∣ξ∣ ≥ π
T ∣η∣ we obtain

∣Nλ(η, ξ)∣ ≥ ∣ξ∣2 ≥
π2

λ2T 2
∣η∣2 ≥ π2

2λ2T 2
∣η∣ ≥ π2

8λ2T 2
(1 + 2∣η∣).

Combining these estimates with ∣Nλ(η, ξ)∣ ≥ ∣ξ∣2, we also conclude (A.85)
in the case λ ≠ 0.

Next, we derive a representation formula for the derivatives of mh with
respect to ξ.
Lemma A.3.6. Let h ∈ {0, . . . , n} and α ∈ Nn

0 . Then mh ∈ C∞(R × Rn)
and

Dα
ξmh(η, ξ) = (1 − χ(η))∣η∣θ

∣α∣

∑
`=0

pα,`(ξ)
Nλ(η, ξ)`+1(1 + ∣ξ∣2)∣α∣−`−ζ

, (A.86)

where pα,`∶Rn → C are complex-valued polynomials, and

deg pα,` ≤
⎧⎪⎪⎨⎪⎪⎩

∣α∣ if h = 0,
∣α∣ + 1 if h ∈ {1, . . . , n},

ζ =
⎧⎪⎪⎨⎪⎪⎩

1 − θ if h = 0,
1
2 − θ if h ∈ {1, . . . , n}.
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Proof. By Lemma A.3.5, the denominator Nλ(η, ξ) is bounded from below
for ∣η∣ ≥ 1

2 , and mh(η, ξ) = 0 for ∣η∣ ≤ 1
2 . Since all involved functions are

smooth, we thus conclude that mh is smooth on R×Rn. We show formula
(A.86) inductively. For α = 0 there is nothing to show. Hence assume
that (A.86) holds for some α ∈ Nn

0 . Differentiating the terms of the sum
in (A.86) separately, we obtain

∂ξj[
pα,`(ξ)

Nλ(η, ξ)`+1(1 + ∣ξ∣2)∣α∣−`−ζ
] = ∂jpα,`(ξ)(1 + ∣ξ∣2)

Nλ(η, ξ)`+1(1 + ∣ξ∣2)∣α∣+1−`−ζ

− pα,`(ξ)(` + 1)(2ξj − iλδ1j)
Nλ(η, ξ)`+2(1 + ∣ξ∣2)∣α∣−`−ζ

− pα,k(ξ)2(∣α∣ − ` − ζ)ξj
Nλ(η, ξ)`+1(1 + ∣ξ∣2)∣α∣+1−`−ζ

.

Therefore, ∂ξjDα
ξmh is also of the asserted structure. This completes the

proof.

These preparations enable us to show thatmh is an Lq(R×Rn)multiplier
by employing the Marcinkiewicz Multiplier Theorem (Theorem A.3.3).

Lemma A.3.7. The function mh ∈ C∞(R×Rn) is an Lq(R×Rn) multiplier
for all q ∈ (1,∞) and h ∈ {0, . . . , n}.

Proof. By Lemma A.3.6, mh is smooth. Moreover, by (A.85) and (A.86),
we obtain

∣Dα
ξmh(η, ξ)∣ ≤

∣α∣

∑
`=0

∣η∣θ(1 + ∣ξ∣2)ζ ∣pα,`(ξ)∣
(1 + ∣η∣ + ∣ξ∣2)(1 + ∣ξ∣2)∣α∣

.

If h = 0, we have θ + η = 1, so that Young’s inequality and deg pα,k ≤ ∣α∣
imply

∣ξαDα
ξmh(η, ξ)∣ ≤ c0∣ξ∣∣α∣

(∣η∣ + 1 + ∣ξ∣2)(1 + ∣ξ∣2)∣α∣/2
(1 + ∣η∣ + ∣ξ∣2)(1 + ∣ξ∣2)∣α∣

≤ c0.

If h ∈ {1, . . . , n}, we have θ+ζ+ 1
2 = 1, and Young’s inequality and deg pα,` ≤

∣α∣ + 1 lead to the very same estimate. Next we compute the derivative
with respect to η. Identity (A.86) yields

∂ηD
α
ξmh(η, ξ)

= ((1 − χ(η))θ∣η∣θ−2η + χ′(η)∣η∣θ)
∣α∣

∑
`=0

pα,`(ξ)
Nλ(η, ξ)`+1(1 + ∣ξ∣2)∣α∣−`−ζ

− (1 − χ(η))∣η∣θ
∣α∣

∑
`=0

pα,`(ξ)(` + 1)i2πT
Nλ(η, ξ)`+2(1 + ∣ξ∣2)∣α∣−`−ζ

.
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Employing (A.85), we thus have

∣ηξα∂ηDα
ξmh(η, ξ)∣ ≤ c1(1 +

∣η∣
1 + ∣η∣ + ∣ξ∣2

)∣ξ∣∣α∣
∣α∣

∑
`=0

∣η∣θ(1 + ∣ξ∣2)ζ ∣pα,`(ξ)∣
(1 + ∣η∣ + ∣ξ∣2)(1 + ∣ξ∣2)∣α∣

.

With the same argument as above, we see that the remaining terms are
bounded. In particular, we conclude

sup{∣ηβξα∂βηDα
ξmh(η, ξ)∣ ∣ α ∈ {0,1}n, β ∈ {0,1}, (η, ξ) ∈ R ×Rn} < ∞.

Now the Marcinkiewicz Multiplier Theorem (Theorem A.3.3) implies that
mh is an Lq(R ×Rn) multiplier for all q ∈ (1,∞).

For θ ∈ [0,1], κ > 0 and λ ∈ R, we next consider the function

m̃κ,λ∶R ×Rn → C, m̃κ,λ(η, ξ) ∶=
(1 − χ(η))∣κη∣θ∣ξ∣2−2θ

∣ξ∣2 + i(κη − λξ1)
(A.87)

for a cut-off function χ ∈ C∞0 (R; [0,1]) satisfying (A.82) as above. Observe
that m̃κ,λ can be seen as a homogeneous version of (A.83) with λ = 0.
Similarly to Lemma A.3.6, we obtain the following representation formula
for derivatives of m̃κ,λ. Since we are interested in the dependencies on the
parameters κ and λ, we only consider derivatives with respect to ξ2,⋯, ξn
at first. We set

Nκ,λ(ξ, η) ∶= ∣ξ∣2 + i(κη − λξ1).

Lemma A.3.8. The function m̃κ,λ is continuous on R ×Rn and smooth
on the set {(η, ξ) ∈ R ×Rn ∣ ∣ξ∣ ≠ 0} with

Dα
ξ m̃κ,λ(η, ξ) = (1 − χ(η))∣κη∣θ

∣α∣

∑
`=0

pα,`(ξ)
Nκ,λ(ξ, η)`+1∣ξ∣2∣α∣−2`−2+2θ

(A.88)

for all α ∈ Nn
0 with α1 = 0, where pα,`∶Rn → C are complex-valued homoge-

neous polynomials of degree deg pα,` = ∣α∣ that are independent of κ and λ,
or pα,` ≡ 0.

Proof. The proof works analogous to that of Lemma A.3.6. First of all, the
denominator in (A.87) is bounded from below for ∣η∣ ≥ 1

2 , and m̃κ,λ(η, ξ) = 0
for ∣η∣ ≤ 1

2 . Since all involved functions are smooth for ∣ξ∣ ≠ 0, we thus
conclude that m̃κ,λ is smooth for ∣ξ∣ ≠ 0, and m̃κ,λ is continuous on R×Rn.
We prove formula (A.88) inductively. For α = 0 there is nothing to show.
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Hence assume that (A.88) holds for some α ∈ Nn
0 . Differentiating the terms

of the sum in (A.88) separately, we obtain

∂ξj[
pα,`(ξ)

Nκ,λ(ξ, η)`+1∣ξ∣2∣α∣−2`−2+2θ
] = ∂jpα,`(ξ)∣ξ∣2

Nκ,λ(ξ, η)`+1∣ξ∣2∣α∣+2−2`−2+2θ

− pα,`(ξ)(` + 1)2ξj
Nκ,λ(ξ, η)`+2∣ξ∣2∣α∣−2`−2+2θ

− pα,`(ξ)(2∣α∣ − 2` − 2 + 2θ)ξj
Nκ,λ(ξ, η)`+1∣ξ∣2∣α∣+2−2`−2+2θ

.

Therefore, ∂ξjDα
ξ m̃κ,λ is also of the asserted structure. This completes the

proof.

In order to show that m̃κ,λ is an Lq multiplier, we proceed as in Lemma
A.3.7 and employ the Marcinkiewicz Multiplier Theorem (Theorem A.3.3).
To this end, we prepare the following estimates

Lemma A.3.9. There exists a polynomial P ∶R→ R such that

∣ξ∣2 + ∣λξ1∣ + ∣κη∣
∣Nκ,λ(ξ, η)∣

≤ P (λ2/κ) (A.89)

for all ∣η∣ ≥ 1/2.

Proof. Clearly, we have
∣ξ∣2

∣Nκ,λ(ξ, η)∣
≤ 1.

For the remaining estimates, we proceed as in Lemma A.3.5 and distin-
guish two cases. If ∣λξ∣ ≤ κ∣η∣/2, we have ∣κη − λξ1∣ ≥ κ∣η∣ − ∣λ∣∣ξ∣ ≥ κ∣η∣/2 ≥
∣λ∣∣ξ∣, so that

∣λξ1∣ + ∣κη∣
∣Nκ,λ(ξ, η)∣

≤ 3∣κη − λξ1∣
∣κη − λξ1∣

≤ 3.

If ∣λξ∣ > κ∣η∣/2, we obtain ∣λξ∣ ≥ κ/4 and thus

∣λξ1∣ + ∣κη∣
∣Nκ,λ(ξ, η)∣

≤ 3∣λ∣∣ξ∣
∣ξ∣2

≤ 12λ2

κ
.

In total, this shows (A.89).

With estimate (A.89) at hand, we can now prove that m̃κ,λ is an Lq

multiplier and we obtain a bound on the multiplier norm that is uniform
in λ and ω as long as λ2 ≤ θω for some θ > 0.
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A.3 Classical Fourier Analysis

Lemma A.3.10. The function m̃κ,λ ∈ C(R ×Rn) is an Lq(R ×Rn) mul-
tiplier for all q ∈ (1,∞), and there exists a polynomial P ∶R → R such
that

∥opR×Rn[m̃κ,λ]∥L(Lq(R×Rn)) ≤ P (λ2/κ). (A.90)

Proof. By Lemma A.3.8, m̃κ,λ is continuous, and (A.88) yields

∣Dα
ξ m̃κ,λ(η, ξ)∣ ≤

∣α∣

∑
`=0

∣κη∣θ∣ξ∣2−2θ∣pα,`(ξ)∣
∣Nκ,λ(ξ, η)∣

`+1∣ξ∣2∣α∣−2`

for α ∈ Nn
0 with α1 = 0. From the homogeneity of pα,` and Young’s in-

equality, we conclude

∣ξαDα
ξ m̃κ,λ(η, ξ)∣ ≤ c0

∣κη∣ + ∣ξ∣2

∣Nκ,λ(ξ, η)∣
∣α∣

∑
`=0

∣ξ∣2∣α∣

∣Nκ,λ(ξ, η)∣`∣ξ∣2∣α∣−2`
≤ P1(λ2/κ)

by (A.89), where P1 is a polynomial. To compute the derivative of m̃κ,λ

with respect to ξ1, we differentiate each term of the sum in (A.88) sepa-
rately and obtain

∂ξ1[
pα,`(ξ)

Nκ,λ(ξ, η)`+1∣ξ∣2∣α∣−2`−2+2θ
] = ∂ξ1pα,`(ξ)∣ξ∣

2

Nκ,λ(ξ, η)`+1∣ξ∣2∣α∣+2−2`−2+2θ

− pα,`(ξ)(` + 1)(2ξ1 − iλ)
Nκ,λ(ξ, η)`+2∣ξ∣2∣α∣−2`−2+2θ

− pα,`(ξ)(2∣α∣ − 2` − 2 + 2θ)ξ1
Nκ,λ(ξ, η)`+1∣ξ∣2∣α∣+2−2`−2+2θ

.

Proceeding as above, we thus conclude the estimate

∣ξ1ξα∂ξ1Dα
ξ m̃κ,λ(η, ξ)∣

≤ c1
(∣κη∣ + ∣ξ∣2)(∣ξ∣2 + ∣λξ1∣)

∣Nκ,λ(ξ, η)∣2
∣α∣

∑
`=0

∣ξ∣2∣α∣

∣Nκ,λ(ξ, η)∣`∣ξ∣2∣α∣−2`
≤ P2(λ2/κ)

for a polynomial P2. Next we compute the derivative of m̃κ,λ with respect
to η. Identity (A.88) yields

∂ηD
α
ξ m̃κ,λ(η, ξ) = ((1 − χ(η))∣η∣−2η + χ′(η))

∣α∣

∑
`=0

∣κη∣θ∣ξ∣2−2θpα,`(ξ)
Nκ,λ(ξ, η)`+1∣ξ∣2∣α∣−2`

− (1 − χ(η))
∣α∣

∑
`=0

∣κη∣θ(` + 1)iκ∣ξ∣2−2θpα,`(ξ)
Nκ,λ(ξ, η)`+2∣ξ∣2∣α∣−2`

.
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Employing χ′(η)∣η∣ ≤ 1, we thus deduce

∣ηξα∂ηDα
ξ m̃κ,λ(η, ξ)∣ ≤ c2(1 +

∣κη∣
∣Nκ,λ(ξ, η)∣

)
∣α∣

∑
`=0

∣κη∣θ∣ξ∣2−2θ∣pα,k(ξ)∣ ∣ξ∣∣α∣

∣Nκ,λ(ξ, η)∣`+1∣ξ∣2∣α∣−2`
.

With the same argument as above, we see that the remaining terms are
also bounded by P3(λ2/κ) for a polynomial P3. In the very same way, we
derive a similar bound for ηξ1ξα∂η∂ξ1Dα

ξ m̃κ,λ. In total, we thus conclude
the existence of a polynomial P4 such that

∣ηβξα∂βηDα
ξ m̃κ,λ(η, ξ)∣ ≤ P4(λ2/κ)

for all α ∈ {0,1}n, β ∈ {0,1} and (η, ξ) ∈ R × Rn with ∣ξ∣ ≠ 0. Now the
Marcinkiewicz Multiplier Theorem (Theorem A.3.3), implies that m̃κ,λ is
an Lq(R ×Rn) multiplier for all q ∈ (1,∞) and satisfies (A.90).
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A classical problem in the field of mathematical fluid mecha-
nics is the flow of a viscous incompressible fluid past a rigid
body. In his doctoral thesis, Thomas Eiter investigates time-
periodic solutions to the associated Navier-Stokes equations
when the body performs a non-trivial translation.

The first part of the thesis is concerned with the question
of existence of time-periodic solutions in the case of a non-
rotating and of a rotating obstacle. Based on an investigation
of the corresponding Oseen linearizations, new existence
results in suitable function spaces are established. The second
part deals with the study of spatially asymptotic properties
of time-periodic solutions. For this purpose, time-periodic
fundamental solutions to the Stokes and Oseen linearizati-
ons are introduced and investigated, and the concept of a
time-periodic fundamental solution for the vorticity field is
developed.With these results, new pointwise estimates of the
velocity and the vorticity field associated to a time-periodic
fluid flow are derived.
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