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multivariate stirling polynomials

1 Introduction

1.1 Background and problem

It is well-known that a close connection exists between iterated diUerentia-
tion and Stirling numbers (see, e. g., [44, 77, 101]). Let s1(n, k) denote the
signed Stirling numbers of the Vrst kind, s2(n, k) the Stirling numbers of the
second kind, and D the operator d/dx. Then, for all positive integers n, the
nth iterate (xD)n can be expanded into the sum

(xD)n =

n∑
k=1

s2(n, k)xkDk. (1.1)

An expansion in the reverse direction is also known to be valid (see, e. g., [44,
p. 197] or [77, p. 45]):

Dn = x−n
n∑
k=1

s1(n, k)(xD)k. (1.2)

Let us Vrst look at Eq. (1.1). The occurrence of the Stirling numbers can be
explained combinatorially as follows. Observing

(xD)nf(x) = Dn(f ◦ exp)(log x)

we can use the classical higher-order chain rule (named after Faà di Bruno;
cf. [42, 44], [51, pp. 52, 481]) to calculate the nth derivative of the composite
function f ◦ g:

(f ◦ g)(n)(x) =

n∑
k=1

Bn,k(g′(x), . . . , g(n−k+1)(x)) · f (k)(g(x)), (1.3)

where Bn,k ∈ Z[X1, . . . ,Xn−k+1], 1 ≤ k ≤ n, is the (partial) exponential
Bell polynomial

Bn,k(X1, . . . , Xn−k+1) =
∑

r1,r2,...

n!

r1!r2! . . . (1!)r1(2!)r2 . . .
Xr1

1 Xr2
2 . . .

(1.4)
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the sum to be taken over all non-negative integers r1, r2, . . . , rn−k+1 such
that r1 + r2 + . . .+ rn−k+1 = k and r1 +2r2 + . . .+(n−k+1)rn−k+1 = n.
The coeXcient inBn,k counts the partitions of n distinct objects into k blocks
(subsets) with rj blocks containing exactly j objects (1 ≤ j ≤ n − k + 1).
Therefore, the sum of these coeXcients is equal to the number s2(n, k) of
all such partitions. So we have Bn,k(x, . . . , x) = s2(n, k)xk . Evaluating
(f ◦ exp)(n)(log x) by Eq. (1.3) then immediately gives the right-hand side of
Eq. (1.1).

Question. Can also Eq. (1.2) be interpreted in this way by substituting jth
derivatives in place of the indeterminates Xj of some polynomial Sn,k ∈
Z[X1, . . . ,Xn−k+1], the coeXcients of which add up to s1(n, k)?

The main purpose of the present chapter is to give a positive and com-
prehensive answer to this question including recurrences, a detailed study of
the inverse relationship between the polynomial families Bn,k and Sn,k , as
well as fully explicit formulas (with some applications to Stirling numbers
and Lagrange inversion).

The issue turns out to be closely related to the problem of generalizing
Eq. (1.1), that is, Vnding an expansion for the operator (θD)n (n ≥ 1, θ a
function of x). Note that, in the case of scalar functions, (θD)f is the Lie
derivative of f with respect to θ. Several authors have dealt with this prob-
lem. In [21] and [69] a polynomial family Cn,k ∈ Z[X0, X1, . . . , Xn−k] has
been deVned1 by diUerential recurrences and shown to comply with (θD)n =∑n
k=1 Cn,k(θ, θ′, . . . , θ(n−k))Dk . Comtet [21] has tabulated Cn,k up to n =

7 and stated that Cn,k(x, . . . , x) = c(n, k)xn, where c(n, k) := |s1(n, k)|
denotes the signless Stirling numbers of the Vrst kind (‘cycle numbers’ ac-
cording to the terminology in [50]). Since however all coeXcients of Cn,k
are positive, Cn,k does not appear to be a suitable companion for Bn,k with
regard to the desired inversion law.

Todorov [99, 100] has studied the above Lie derivation with respect to a
function θ of the special form θ(x) = 1/ϕ′(x), ϕ′(x) 6= 0. His main results in
[99] ensure the existence of Sn,k ∈ Z[X1, . . . ,Xn−k+1] such that

(
ϕ′(x)−1D

)n
f(x) =

n∑
k=1

An,k(ϕ′(x), . . . , ϕ(n−k+1)(x)) · f (k)(x), (1.5)

1 Here and in Chapter II we write Cn,k instead of Comtet’s An,k (cf. [21]) in order to avoid
misunderstandings. Note that in both chapters of this book An,k is exclusively used to denote
the ‘Lie coeXcients’ according to Todorov (see Eq. (1.5) below).
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where An,k := X
−(2n−1)
1 Sn,k . While diUerential recurrences for An,k can

readily be derived from Eq. (1.5) (cf. [99, Equation (27)] or a slightly modiVed
version in [100, Theorem 2]), a simple representation for Sn,k — as is Eq. (1.4)
for Bn,k — was still lacking up to now. Todorov [99, p. 224] erroneously be-
lieved that the somewhat cumbersome ‘explicit’ expression in [21] for the
coeXcients of Cn,k would directly yield the coeXcients of Sn,k . Also the
determinantal form presented in [99, Theorem 6] for (D/ϕ′)n (and thus also
for Sn,k) may only in a modest sense be regarded as explicit.

Nevertheless, Todorov’s choice (θ = 1/ϕ′) eventually proves to be a crucial
idea. Among other things, it reveals that An,k (and thus Sn,k) is connected
with the classical Lagrange problem of computing the compositional inverse
f of a given series f(x) =

∑
n≥1(fn/n!)xn, f1 6= 0. As we shall see later,

the Taylor coeXcients fn of f(x) can be expressed simply by applying An,1
to the coeXcients of f as follows:

fn = An,1(f1, . . . , fn). (1.6)

On the other hand, Comtet [22] found an inversion formula that expresses
fn in terms of the (partial) exponential Bell polynomials:

fn =

n−1∑
k=0

(−1)kf−n−k1 Bn+k−1,k(0, f2, . . . , fn). (1.7)

This result has been shown by Haiman and Schmitt [33, 81] to provide es-
sentially both a combinatorial representation and a cancellation-free com-
putation of the antipode on a Faà di Bruno Hopf algebra (a topic that has
received a lot of attention in quantum Veld theory due to its application to
renormalization; cf. [55, 20, 28]). Combining Eq. (1.6) with Eq. (1.7) we ob-
tain an expression for An,1 in terms of the Bell polynomials. This suggests
looking for a similar representation for the whole family An,k , 1 ≤ k ≤ n.
As a main result (Theorem 6.1), we shall prove the following substantially
extended version of Eq. (1.6) & Eq. (1.7):

An,k =

n−1∑
r=k−1

(−1)n−1−r
(

2n− 2− r
k − 1

)
X
−(2n−1)+r
1 B̃2n−1−k−r,n−1−r.

(1.8)
The tilde over B indicates that X1 has been replaced by 0. From Eq. (1.8)
we eventually get the desired explicit standard representation for An,k that
corresponds to the one for Bn,k given in Eq. (1.4).
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Equation Eq. (1.8) states a somewhat intricate relationship between the
families An,k and Bn,k . A simpler connection of both expressions is the fol-
lowing basic inversion law, which generalizes the orthogonality of the Stir-
ling numbers (cf. Section 5):

n∑
j=k

An,jBj,k = δnk (1 ≤ k ≤ n), (1.9)

where δnn = 1, δnk = 0 if n 6= k (Kronecker symbol).

1.2 Terminology and notation

Considering Eq. (1.9) and the fact that the sum of the coeXcients of An,k and
of Bn,k are equal to s1(n, k) and to s2(n, k), respectively, it may be justiVed
to call An,k and Bn,k multivariate Stirling polynomials of the Vrst and second
kind. There should be no risk of confusing them with polynomials in one
variable like those introduced and named after Stirling by Nielsen [73, 74],
neither with the closely related ‘Stirling polynomials’ fk(n) := s2(n+ k, n)
and gk(n) := c(n, n − k) Gessel and Stanley [31] have investigated as func-
tions of n ∈ Z.

A sequence r1, r2, r3, . . . of non-negative integers is said to be an (n, k)-
partition type, 0 ≤ k ≤ n, if r1+r2+r3+. . . = k and r1+2r2+3r3+. . . = n.
The set of all (n, k)-partition types is denoted by P(n, k); we write P for the
union of all P(n, k). In the degenerate case (k = 0) set P(n, 0) = ∅, if n > 0,
and P(0, 0) = {0} otherwise. Let k ≥ 1. Since n−k+1 is the greatest j such
that rj > 0, we often write (n, k)-partition types as ordered (n−k+1)-tuples
(r1, . . . , rn−k+1).

The polynomials to be considered in the sequel have the form

Pπ =
∑

π(r1, r2, . . .)X
r1
1 Xr2

2 . . . ,

where the sum ranges over all elements (r1, r2, . . .) of a full set P(n, k). As a
consequence, Pπ is homogeneous of degree k and isobaric of degree n. The
coeXcients of Pπ may be regarded as values of a map π : P −→ Z deVned by
some combinatorially meaningful expression, at least in typical cases like the
following:

ω(r1, r2, . . .) :=
(r1 + 2r2 + . . .)!

r1! r2! · . . .
order function (Lah) (1.10)
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ζ(r1, r2, . . .) :=
ω(r1, r2, . . .)

1r1 2r2 · . . .
cycle function (Cauchy) (1.11)

β(r1, r2, . . .) :=
ω(r1, r2, . . .)

(1!)r1 (2!)r2 · . . .
subset function (Faà di Bruno) (1.12)

These coeXcients count the number of ways a set can be partitioned into
non-empty blocks according to a given partition type, that is, rj denotes the
number of blocks containing j elements (j = 1, 2, . . .). The result depends
on the meaning of ‘block’: linearly ordered subset (ω), cyclic order (ζ), or
unordered subset (β).

It should be noticed that the corresponding polynomials Pω, Pζ , Pβ(=
Bn,k) are closely related to well-known combinatorial number-families:

Pω(1, . . . , 1) = l+(n, k), unsigned Lah numbers [57, 77]

Pζ(1, . . . , 1) = c(n, k) =

[
n

k

]
, unsigned Stirling numbers of the 1st kind

Pβ(1, . . . , 1) = s2(n, k) =

{
n

k

}
, Stirling numbers of the 2nd kind.

1.3 Overview

This chapter is organized as follows: In Section 2 a general setting is sketched
that allows functions and derivations to be treated algebraically. Section 3
contains a study of the iterated Lie operator D(ϕ)−1D. An expansion for-
mula for (D(ϕ)−1D)n is established together with a diUerential recurrence
for the resulting Lie coeXcients An,k . Doing the same with respect to the
inverse function ϕ will yield, conversely, Dn expanded and Bn,k as the cor-
responding Lie coeXcients. A by-product of Section 3 is Faà di Bruno’s for-
mula and its applications to the partial Bell polynomials Bn,k to be brieWy
summarized in Section 4. These basic facts then lead to both inversion and
recurrence relations, which we shall demonstrate and discuss in Section 5.
The main task in Section 6 is to Vnd an explicit polynomial expression for
Sn,k . This is eventually achieved by means of Eq. (1.8), a proof of which
makes up a central part of the section. In Section 7 we give some applications
to the Lagrange inversion problem and to exponential generating functions.
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2 Function algebra with derivation

2.1 Basic notions

Menger [64] has introduced the notion of a ‘tri-operational algebra’ of func-
tions, which in the sequel (since 1960) stimulated to a great extent studies
of generalized function algebras, e. g., [26, 65, 89, 90, 96]. In what follows
I will propose a variant of Menger’s original system tailored to our speciVc
purposes of treating functions and their derivatives in a purely algebraic way.

Let (F ,+, ·) be a non-trivial commutative ring of characteristic zero, 0
and 1 its identity elements with respect to addition and multiplication. We
will think of the elements of F as ‘functions (of one variable)’ and therefore
assume that F has a third binary operation ◦ (called composition) together
with an identity element ι such that the following axioms are satisVed:

(F1) f ◦ (g ◦ h) = (f ◦ g) ◦ h
(F2) (f + g) ◦ h = (f ◦ h) + (g ◦ h)

(F3) (f · g) ◦ h = (f ◦ h) · (g ◦ h)

(F4) f ◦ ι = ι ◦ f = f

(F5) 1 ◦ 0 = 1

(F4) is assumed to be valid for all f ∈ F ; hence ι is unique. Let f be any
element of F . From (F2) we conclude 0 ◦ f = 0; so we get ι 6= 0 (by (F4)) and
ι 6= 1 (by (F5)). (F2) furthermore implies (−f) ◦ g = −(f ◦ g).

The least subring of F containing 1 will in the following conveniently be
identiVed with Z. (F5) then extends to the integers, that is, n ◦ 0 = n holds
for all n ∈ Z.

Given a unit f in F (i. e., f is an element invertible with respect to multi-
plication), we write f−1 (or 1/f) for the inverse (henceforth called reciprocal)
of f .

Remark 2.1. It must be emphasized that ◦ has to be understood as a partial
operation (of course, ι−1 ◦ 0 is not deVned). We therefore assign truth values
to formulas, especially to our postulates (F1–3), whenever the terms involved
are meaningful.

Let f, g ∈ F be functions such that f ◦ g = g ◦ f = ι. Then g is called the
compositional inverse of f , and vice versa. It is unique and will be denoted by

f . The following is obvious: ι = ι, f = f , and f ◦ g = g ◦ f .
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DeVnition 2.1. Suppose (F ,+, ·, ◦) satisVes (F1–5). We then call a mapping
D : F −→ F derivation on F , and (F ,+, ·, ◦, D) a function algebra with
derivation, if D meets the following conditions:

(D1) D(f + g) = D(f) +D(g)

(D2) D(f · g) = D(f) · g + f ·D(g)

(D3) D(f ◦ g) = (D(f) ◦ g) ·D(g)

(D4) D(ι) = 1

(D5) D(f) = 0 =⇒ f ◦ 0 = f

The classical derivation rules (D1), (D2) make F into a diUerential ring. Some
simple facts are immediate: D(0) = D(1) = 0, D(m · f) = m ·D(f) for all
m ∈ Z. By an inductive argument the product rule (D2) can be generalized:

D(f1 · · · fn) =

n∑
k=1

f1 · · · fk−1 ·D(fk) · fk+1 · · · fn. (2.1)

By putting fi = f , 1 ≤ i ≤ n, Eq. (2.1) becomes D(fn) = nfn−1D(f). If
f is a unit, this holds also for n ≤ 0. As usual, fm for m < 0 is deVned by
(f−1)−m.

(D4) prevents D from operating trivially. In the case of a Veld F , (D4) can
be weakend to D(f) 6= 0 (for some f ∈ F ), since the chain rule (D3) then
gives D(f) = D(f ◦ ι) = D(f) ·D(ι).

Applying (D3) and (D4) to D(f ◦ f) we obtain the inversion rule

D(f) =
1

D(f) ◦ f
. (2.2)

In a diUerential ring, it is customary to deVne the subring K of constants as
the kernel of the additive homomorphism D, that is,

K := {f ∈ F |D(f) = 0}.

We have Z ⊆ K. Constants behave as one would expect.

Proposition 2.1. c ∈ K ⇐⇒ c ◦ f = c for all f ∈ F .

Proof. ⇒: Suppose D(c) = 0. Then, for any f ∈ F we have by (F1) and (D5):
c ◦ f = (c ◦ 0) ◦ f = c ◦ (0 ◦ f) = c ◦ 0 = c. —⇐: Set f = 0 and apply the
chain rule (D3). ♦


