
Abstract

Pain assessment has remained largely unchanged for decades and is cur-
rently mainly based on self-reports, which are the current gold standard.
Unfortunately, despite different versions for various applications, these have
significant drawbacks. Self-reports are based solely on patients’ subjective
assessment of their pain and are therefore influenced by personal experi-
ence and are highly subjective, leading to uncertainty in ratings, difficult
comparability, and significant variance between individuals, as well as dis-
crepancies from the truth. In addition, accurate pain assessment remains
time-consuming, while continuous measurement is almost impossible in clin-
ical settings. Finally, the method is limited to people who are conscious and
able to express their own level of pain.

To overcome the above-mentioned disadvantages of self-report, automated
pain detection aims to provide a continuous, objective, and easy-to-acquire
measure of pain in subjects. The basic idea is to train learning algorithms on
sensory data related to pain intensity so that they can later make a prediction
on unseen data. The successful implementation of such a model would make
it possible to objectively, reliably, and continuously assess the intensity of
pain in human subjects.

While the quest to create an automated pain monitoring system has led
to various implementations of this idea, models have lacked several critical
aspects for successful use in clinical settings. Although of paramount im-
portance for medical applications, the performance of existing automated
pain detection systems is currently inadequate. In addition, the different
approaches to pre-processing, segmentation, feature extraction, classification
and scoring that have been implemented in the past obscure the reasons for
performance improvements of individual changes and make it challenging to
identify suggestions for improvement through new approaches. Furthermore,
the data acquisition, and therefore the systems, are based on recording de-
vices with fixed settings, which makes their use in dynamic clinical practice
almost impossible. Finally, the research community has focused on improving
the learning algorithms for automatic pain detection, particularly in terms of
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Chapter 1

Introduction

The recent development of Information and Communications Technology
(ICT) affects our life in various aspects. While the extraction of knowledge
from vast amounts of data in practical application becomes cheaper and more
accessible, sectors of the economy, such as the automotive industry [1] among
others, profit greatly thanks to the sensor data and automation of data an-
alytics. As the number of affordable devices to collect sensor data, such
as Inertial Measurement Units (IMUs) and smartphones, rose, the volume of
available data for diverse use cases heightened as well. Numerous approaches
to data analysis have appeared to extract useful information. One current
trend to manage and gain knowledge from these newly obtained and extensive
data streams is to apply Artificial Intelligence (AI). In particular, the idea of
training computers and letting them learn specific tasks given a defined data
set accelerated. Like the human learning process, Machine Learning (ML) al-
gorithms aim to improve system performance based on experience. By fitting
models on training data without incorporating explicit decision rules during
the implementation process, these learning algorithms are able to generate
predictions on new and unseen observations afterwards [2].

This trend was further fuelled by the recent success of Deep Learning (DL),
which achieved outstanding performance results for various tasks. Here, so-
called Artificial Neural Network (ANN) consisting of several layers with up
to billions of parameters automatise the learning process. While the concepts
of ANN were researched during the last century [3], their success emerged in
the last years due to the availability of increased computational power and
enormous data sets. Gaining momentum from challenges including millions of
images, like the ImageNet large scale visual recognition challenge [4], DL tasks
including image classification and object localisation and detection excelled
primarily. The performance of these systems was incrementally improved
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by the research community to the point of even outperforming humans in
specific tasks [5].

With the goal of continuously improving patient care, innovations through
DL and digitisation, in general, have also found their way into the healthcare
sector. Today, a wide variety of electronic data processing has become part of
everyday clinical practice. For example, Electrocardiograms (ECGs) are one
of the standard monitoring devices to oversee cardiac activity in Intensive
Care Unit (ICU) patients [6] and imaging techniques, such as Computer
Tomography (CT) and Magnetic Resonance Imaging (MRI), are used for
detection of cancer [7], stroke [8], inflammation [9], fractures [10], and var-
ious other disorders. In addition to technical devices as monitoring tools,
intelligent systems have been developed to support clinical decisions, train
inexperienced staff, and even enhance the knowledge of medical experts in
the field. Various DL models have been researched and implemented, such as
for the classification of skin cancer [11] based on colour images of the skin, of
COVID-19 patients based on chest CT images [12] or of Parkinson’s disease
based on audio files [13].

While different medical applications, especially imaging techniques, could
benefit from the digitalisation of the health sector, various areas still remain
untouched and even outdated. Although accurate pain assessment is essential
for various medical applications, its gold standard has remained unchanged
over the past decades. Usually, pain is measured via verbal feedback from
the patients utilising diverse questionnaires. While this approach may be
sufficient in some cases, these questionnaires have significant drawbacks. On
the one side, the questionnaires rely on subjects who can communicate their
subjective level of pain. On the other hand, the measurement is highly sub-
jective, as it originates from the persons themselves. Moreover, continuous
monitoring of pain levels in people remains an obstacle.

To address these issues, automated pain recognition systems emerged in
the past years. Their main goal is to provide a reliable, continuous, and
objective pain measurement based on unobtrusive collected data, either be-
havioural or physiological. To accomplish this task, varying ML approaches
based on heterogeneous data sets were introduced by the research community
in the past. While it could be shown that automated approaches can distin-
guish different pain levels in general, particularly between no and high pain,
the established models focus on single modalities, persist in being incompa-
rable, or lack the required accuracy and an explanation of the underlying
decision process.
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The purpose of this thesis is to address the aforementioned limitations of
existing methods and improve the performance of automated pain classifica-
tion. The focus is on the following research questions:

• Which modalities are essential for the task of automated pain classifi-
cation?
Narrowed to physiological sensor modalities, a comparison of common
metrics is given and evaluated to find an optimal set of sensors for
automated pain classification. Moreover, a minimal setup of wearable
devices is examined to ensure an unobtrusive configuration that can be
used in medical situations and daily living.

• Are DL techniques, similar to other ML tasks, actually better than
traditional approaches in the area of automatic pain detection?
DL achieved outstanding performance results for various classification
problems. Their value for automated pain recognition still needs to be
evaluated. Therefore, a fair comparison of classical ML and DL for the
task of automated pain recognition is given.

• Which underlying features are important for the pain recognition task?
ANNs, which have delivered amazing results, mostly consist of black-box
models, so their decision-making process is neither comprehensible nor
transparent. Therefore, a deeper understanding of the decision-making
processes is not possible, which limits their use in medical contexts.
To counteract this, methods of Explainable Artificial Intelligence (XAI)
have been implemented to make the classification of the underlying mod-
els apparent.

The remainder of the Section is structured as follows: Fundamental con-
cepts of time series data analysis and key characteristics of pain, such as
its monitoring and physiological aspects, are given in Sections 1.1 and 1.2.
Section 1.3 explains the motivation of the thesis in more detail. A brief
overview of the contribution of this work is given in Section 1.4. Eventually,
Section 1.5 summarises the structure of the thesis.

1.1 Time Series Analysis

Driven by digitalisation, the Internet of Things and the introduction of smart
devices into our everyday lives, more and more time series data are available.
These data sources and volumes are expected to continue to grow over the
next few years, increasing the importance of high-quality analysis of these
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data. Following this trend, the demand for competent Time Series Anal-
ysis (TSA) using statistical and machine learning techniques will grow as
continuous monitoring and data collection become more common [14]. In
particular, the introduction of cheap and small, yet research-grade, devices
has enabled data collection to move out of the research lab and into people’s
everyday lives, where they have a natural perspective on the things they
are trying to capture [15]. Computing devices worn on the body, so-called
wearables, remain non-intrusive and blend into daily living, often generating
additional amounts of time series data. However, without the fixed setup
provided by studies and experiments, data collected in everyday life can
be diverse, heterogeneous, and affected by artefacts introduced by motion,
electrical interference, and many other confounding influences. This effect
further strengthens the need for accurate and precise analysis of such data.

TSA is a specific way of analysing a sequence of data points collected over
an interval of time. More precisely, the term TSA refers to the extraction
of meaningful statistics, information, and characteristics from data points
arranged in chronological order. Essential components of TSA are the detec-
tion of stationarity, trends, and seasonality, and it involves both exploratory
and descriptive analysis, i.e. aggregating the characteristics of a given data
set and analysing for patterns, trends, or relationships between variables [16].
Its deeper implementation helps to understand and decipher past relation-
ships and to predict future trends. Representations of how variables change
over time can be generated, and their temporal influence over time can be
estimated. From this, additional knowledge is generated, and correlations
between data and time series are better understood. To ensure consistency
and provide reliable results, a large number of clean data points with limited
noise are required. Larger data sets also ensure that the correlations and
patterns identified truly reflect the data and are not skewed by outliers.

Time series data consist of multiple quantitative observations measured
at different points in time. The discrete-time data refer to a single entity
or subject. In contrast, data from several individuals at one point in time
are called cross-sectional and are distinguished from continuous data from a
single entity but at several points in time, which are called time series. Typi-
cally, successive data points of time series are equally spaced in time, but this
is not always the case, depending on the application. Panel data, sometimes
referred to as longitudinal data, are data that cover not only a single time
series but also several units over various points in time [17]. Moreover, uni-
variate time series are those where only a single changing variable is given, for
example, data of one sensor modality. In contrast, multivariate time series
are those in which several variables change over time, for example, multiple
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sensor modalities at the same time. However, this definition remains impre-
cise in many aspects. More formally, time series data can be introduced in
two separate ways. On the one hand, it can be seen as a mapping from the
time domain T to that of the real numbers [16] and is defined by

X : T → Rk , (1.1)
where T ⊆ R and k ∈ N. On the other hand, time series can be seen as a
stochastic process

{X t}t∈T , (1.2)
where X t represents the value of the random variable X at time point t. It
is further distinguished whether T forms a set of real numbers or integers.
The first is called a continuous-time stochastic process, whereas the second
represents a stochastic process in discrete time.

There are several tools available for TSA. An increasingly popular method
is building machine learning algorithms, which are described in more detail
in Section 1.1.1, and in particular the use of DL methods (Section 1.1.2).

1.1.1 Machine Learning

As the name suggests, machine learning is an approach to improving sys-
tem performance based on teaching machines to learn from experience using
computer techniques. While human knowledge and expertise are based on
assimilated memory and past findings, computers rely on data. Using such
data, ML aims to build mathematical algorithms to acquire and train models.
During the training process, these learning models are fed with exemplary
data and trained for a specific task, for example, by statistically analysing
the data. Subsequently, predictions can be made for new and unseen obser-
vations [2] to create further insights into new records.

For the successful implementation of learning algorithms, several common
steps are followed. The fundamental prerequisite is a comprehensive data
set. Here, researchers are dependent on publicly available data sets or have
to acquire their own data. Data sets usually consist of a limited number of
records, so-called instances or samples, which describe an event or an object
with several attributes. In order to further prepare the available samples, a
preprocessing is carried out, which includes tasks such as data cleaning and
noise reduction. If the data are only available as a continuous time series,
a segmentation step can be used to cut out separate samples. Meaningful
characteristics of the instances, called features, are then extracted. The fea-
tures are then fed into a model that is adapted to a specific task, also called
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learning or training. While being trained on the given training data set, the
objective of the learning algorithms is to perform well on later unseen data.
This ability, also referred to as generalisation, is facilitated by training data
that reflect the characteristics of the entire sample space and a model that is
not over-trained on the training set. Such overfitting of learning algorithms
indicates memorisation of the training sample without acquiring knowledge
of the underlying concepts and relationships. To evaluate the performance,
the model is tested by making predictions (also referred to as inference) on
an independent testing set. The underlying rules for the given task are called
the facts or ground truth, which the model tries to approximate [2]. Usually,
the training set and testing set are obtained by splitting the initial given data
set at the beginning. The steps described are part of the Pattern Recogni-
tion Chain (PRC), which summarises the essential core stages to realise ML
models. Formally, a data set D with ND ∈ N∗ samples is defined as

D =
{
x(1), x(2), . . . , x(ND)}

. (1.3)
Here, each instance x represents an input vector in a Nx-dimensional sample
space X as

x =
[
x1, x2, . . . , xNx

]⊺ ∈ X , (1.4)
where Nx ∈ N∗. Usually, an outcome information related to every sample is
given as well in order to train an effective prediction model. The associated
outcome of a given instance is called a label and defined as a vector y of
several outcome values y as

y =
[
y1, y2, . . . , yNy

]⊺ ∈ Y , (1.5)
where Ny ∈ N∗, Y is the set of all labels (label space), and since there is
precisely one label for each sample, it is usually the case that Nx = Ny. The
resulting data label pairs can be written as (x(i), y(i)), where y(i) is the label
of sample x(i).

ML approaches can be divided into distinct categories, each with its own
subdivisions. Generally, a distinction is made between supervised and unsu-
pervised learning. In supervised learning, the given data sample is mapped
to its fact. The ground truth to be achieved must already be available during
training as a label that specifies the desired model output for each sample.
The trained learning algorithm represents a function f realising one possible
mapping from X to Y in the form of

f : X 7→ Y (1.6)
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for a given labelled data set, which is revised as

D =
{
(x(1), y(1)), (x(2), y(2)), . . . , (x(ND), y(ND))

}
. (1.7)

The retrieved mapping function can be applied to any observation of X and
generate a predicted label ŷ(i) for the sample x(i) as

f
(
x(i))

= ŷ(i) . (1.8)
A mismatch or error between predicted label ŷ(i) and actual ground truth
y(i) is measured by an error or loss function L(·) and highly dependent on
the applied learning algorithm, its configuration, and parameters θ. The
main objective of supervised learning is to optimise this error and minimise
the mismatch of predicted and actual labels during training by estimating
ideal parameters θ̂ as

θ̂ = argmin
θ∈Θ

L (f θ(X ),Y) , (1.9)

where θ depicts the set of parameters specific to f and Θ is the set of all possi-
ble parameter configurations. If the desired fact of each instance is a discrete
label, it is called a classification problem; if it is continuous, it is referred
to as regression problem (y ∈ R) [2]. Classification problems are further
distinguished by the number of distinct types of labels, called classes. There
are binary classification problems when there are only two classes, where
one label is marked as positive and the other one as negative, and multi-class
classification problems when there are several classes. To create a categorical
output in classification problems, a distribution of integers is associated with
the different labels. For a binary classification, the classes are encoded as a
single one or zero for the positive or negative class, respectively (y ∈ {0, 1}).
Typically, in multi-class classification, the number of elements in the label
vector Ny is set equal to the number of classes available NC so that each po-
sition in the vector represents a class, where zero indicates that the class is
absent and a one encodes the presence of the class. The applied ML models
for classification tasks are also referred to as classifiers. In addition, a higher
dimensionality or a single output can be given for the target in regression
tasks as well. In unsupervised learning, on the other hand, there is no label
information, and a transformation is learned for the patterns in hand with-
out a given target. For example, in clustering, the main goal is to categorise
the given samples based on their similarities. To do this, observations are
grouped into groups or clusters in such a way that more similar instances are
grouped together. Often, a number of clusters are defined prior to the exe-
cution of the algorithm, which has a high impact on the resulting outcome.
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Figure 1.1: PRC with individual steps that should be optimised in parallel to achieve
the best performance for the given ML task [20].

But there are also tasks such as dimensionality reduction (e.g. principal
component analysis [18]) or algorithms such as Gaussian mixture models [19]
that are categorised as unsupervised learning. There are even approaches
in between, called semi-supervised learning, which work on data sets with
incomplete or missing label spaces. The mixture of supervised and unsuper-
vised approaches aims to complete corrupted or absent labels or even create
a label space automatically without human annotation. However, the dis-
tinction between supervised, semi-supervised and unsupervised learning can
sometimes be blurred as these categories overlap, and some methods cannot
be clearly classified. Although the acquisition of labels is often a challenge,
most of the time ML tasks are defined as supervised because of their better
performance compared to other tasks.

Figure 1.1 visualises the independent steps of the PRC for a classification
task using time series data of several sensors. While several measures are
performed individually, all of them need to be optimised in parallel to find
the optimal model for the given task.

Although it can lead to outstanding results for various tasks, ML faces
recurring problems that need to be overcome, where the issues may be depen-
dent on the given task to solve. As mentioned above, a comprehensive and
extensive data set is required to learn the desired associations correctly. It
is essential that the classes or relationships to be recognised are represented
in the data set and sufficient numbers of samples substitute each statement.
Besides the quantity of data points, the quality of the samples and the labels
also play a crucial role. The task of establishing valid ground truths is often
tedious and is further complicated by the time-consuming manual labelling
of numerous samples by experts or the quantification of specifications that
are difficult to grasp, such as a sensation of pain, even though the task may
seem obvious or straightforward to humans. Nevertheless, correct labelling
is crucial so ML models can learn the underlying concepts adequately. In ad-
dition, varying preprocessing steps were introduced in the past to overcome
distortion of the learning algorithms introduced by artefacts and outliers in
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Figure 1.2: Scheme of three different approaches to fit a curve through the same data
points. While a linear fit (a) cannot adequately represent the data at hand, it suffers from
underfitting, a highly adjusted and customised fit (c) suffers from overfitting, it does not
replicate the underlying structure of the data, although it maps many samples correctly.
In contrast, a quadratic function (b) reflects the composition of the data and generalises
applicable to unseen data points as well.

the available data or an uneven distribution of samples per class, also referred
to as unbalanced data. During the creation and training of the learning al-
gorithm, its capacity, i.e. its ability to adapt to the given training set, must
also be monitored. Although accurate learning and a close fit to the train-
ing data set are important, the models created should also perform well on
the test data set. This generalisation capability is highly dependent on the
capacity of the chosen learning model. If it is too high, memorisation of the
training data set is possible, resulting in deficient performance on unseen
data points that differ from the samples in the training data set (overfit-
ting). In contrast, if it is too low, the model suffers from underfitting and
is not able to obtain a sufficiently low error value on the training set [21].
Figure 1.2 visualises the underlying problem of overfitting and underfitting,
presented for the task of fitting a curve for data samples that seem to follow
a quadratic distribution. While a linear fit cannot adequately represent the
data at hand, a highly adjusted and customised fit cannot replicate the un-
derlying structure of the data, although it maps many samples correctly. In
contrast, a quadratic function reflects the underlying structure of the data
and generalises applicable to unseen data points as well.

To estimate the extent of possible underfitting and overfitting, learning
algorithms are usually evaluated on different data sets than those on which
they were previously trained, as testing on the same data would lead to overly
optimistic performance results [22]. Testing the ML models on new unseen
data is believed to give a reasonable estimate of its performance in real-life
situations. As data is limited in most scenarios, one of the most straightfor-
ward approaches is to split the available data set into training and testing
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data. As this can lead to random splits that benefit the model’s evaluation
performance, several Cross Validation (CV) schemes have been introduced.
Here, portions of the available data are used to test and train a learning
algorithm in different iterations to achieve an overall performance by aver-
aging the accuracies of the individual runs. Different CV-schemes specify in
different ways how to exclude a test set, also called hold-out, usually with a
fixed size for each run. Schemes involving all possible training sets of a given
size are referred to as exhaustive data splitting, while those that omit some
splits are called partial data splitting. Generally, CV schemes allow perform-
ing several runs of evaluation even when the number of data samples for the
given task may be limited, thus reporting more valid performance metrics
that have been subject to more testing. Although the methods can be ap-
plied independently of the underlying learning algorithm, the strengthened
assessment comes at the cost of increased computation time for evaluation.
One of the most used approaches is the exhaustive k-fold CV, where the
available data is split into k splits, also called folds. Each is excluded once
as a test set, while the rest is used as training data during the k repeated
evaluation runs, each time using a different fold as a test set [23]. While this
technique may be appropriate for independent objects, its use is questionable
for person-specific data. As models can learn person-specific features rather
than the given task, for example, a disease detection, k-fold CV results can be
misleading [24] as the models recognise people from training in the test phase
(subject-dependent split). Therefore, splits are preferred where subjects only
appear in the test or training data set (subject-independent split). One pos-
sible implementation is the exhaustive Leave-one-subject-out (LOSO) CV,
which is a variant of the k-fold CV, but folds consists of a single subject. It
evaluates the given model on new subjects, where each person is left out and
tested upon once [25].

As mentioned earlier, key characteristics are often manually generated
from the given observation and fed to the learning algorithms during train-
ing rather than the raw data itself. This step of extracting so-called Hand-
Crafted Features (HCFs) from the given instances is used to create optimal
representations for the considered problem to solve. Ideally, the extracted
features present information about the samples themselves that describe com-
plementary content from specific aspects. While the features should fully de-
scribe the data points and their key characteristics, they significantly reduce
the initial amount of input data, allowing for efficient learning. Meaning-
ful HCFs are especially important to overcome the so-called semantic gap
between the low-level representation of observations (for example, the pix-
els of an image) and the high-level abstraction (like the human perception
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of the mentioned image) often associated with its ground truth [26]. Qual-
ity feature vectors decode high-level properties that are highly relevant to
the task at hand, with as few individual features as possible. To do so,
traditional feature extraction heavily relied on domain knowledge. Experts
usually communicated their reasoning and insights to be implemented as al-
gorithms. Conventional extraction of HCFs is therefore time-consuming and
dependent on prior knowledge of the field, highlighting the need for other
solutions. One way to avoid this complicated step is given by other methods
of AI, especially DL. These concepts are introduced in the next chapter.

1.1.2 Deep Learning

AI has many different subfields and manifestations. One of them is DL, which
deals with the development of large neural network models built to make ac-
curate, data-driven decisions by training countless numbers of neuronal pa-
rameters to generalise on carrying out a particular task. Large data sets are
required for the implementation and correct training. The networks learn
immediately from the raw data fed into them using a divide-and-conquer
strategy. The basis of the processing is formed by countless small compu-
tational units called neurons, which learn simple functions. Complex tasks
can then be achieved by combining the individual elements by stacking them
together into layers that form complex networks consisting of millions of pa-
rameters. These Neural Networks (NNs) have been applied to several fields
and achieved outstanding performance, sometimes even outperforming hu-
mans for tasks such as image classification. The success of any ML task
depends on knowing what to monitor and how to measure it, which makes
the task of feature generation and selection such a crucial step in building
learning algorithms. Traditional ML approaches rely on domain expertise
to solve the challenge of finding meaningful characteristics. Although HCFs
can lead to promising results, their identification and feature design, in gen-
eral, remains a time-intensive activity. DL tries to overcome this issue by
attempting to learn essential characteristics for the task at hand automati-
cally. Features are learned directly from low-level raw data, and outputs are
generated by a highly complex non-linear mapping that depends on millions
of network parameters. To do this, DL relies on massive amounts of exam-
ple data. But when large data sets are available, the approach often builds
highly accurate models for complex domains and has shown great success in
the past in tasks such as image classification, speech recognition, and many
others [27].


