
Chapter 1

Introduction

These days, life without electrical energy is almost inconceivable. Electric-

ity networks play a key role in supplying customers with electrical energy and

are organized hierarchically depending on their main task, as shown in Figure

1.1. Transmission grids are used to transport electricity over long distances

from large power plants to distribution grids. They are operated at high voltage

level (above 100 kV) to keep power losses low during transport. Distribution

networks, located in cities or rural areas, distribute electricity to end customers.

They are usually divided into medium-voltage and low-voltage networks. At the

medium-voltage level, larger customers such as factories, smaller power plants,

or large wind farms are usually connected to the power grid. Households are

supplied at the low-voltage level, which in Europe is 400 V (line-to-line volt-

age). Both the transmission and distribution networks are usually operated by

different companies that only loosely communicate with each other. For all

voltage levels and grid types, the relationship between the load and generation

is key aspect. While generation involves the production of electrical energy,

load refers to the consumption of this energy, and generation must cover, but

not exceed, the consumption, including network losses. This means that trans-

mission and distribution companies may only feed as much electricity into the

grid as can be consumed at any given time.
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Unfortunately, since the storage of a significant amount of electrical energy

needs further development, the generation must be balanced with consumption

as overproduction of electrical energy can lead to equipment damage or emer-

gency shutdowns. On the other hand, excessive consumption relative to gen-

eration results in under-voltage, malfunction of electrical equipment, and even

failure of the supply. Therefore, knowing the actual and expected consump-

tion is critical for utilities at all voltage levels to provide an adequate amount of

generated power and, in this way, provide reliable service to the end customer.

In real-time operation, this information is obtained from on-site measuring de-

vices, and based on this information, utilities decide whether measures such as

load shedding or generation curtailment are immediately necessary. For plan-

ning, information about expected consumption is obtained from load forecasts.

1.1 Basic terms

1.1.1 Time series definition and properties

Before examining electrical load forecasting in more detail, some terms related

to time series should first be clarified. A time series is defined as a set of data

collected at ordered points in time. If the time intervals are equal, the time series

is called regular, whereas otherwise, it is irregular [Jos22]. The interval length,

that is frequently used in the area of short-term load forecasting, is either 15

minutes or one hour and the time series considered in this work are regular.

Another important characteristic is the stationarity of the time series. If the

distribution of a time series does not change over time, the time series is called

stationary, otherwise, it is non-stationary [Jos22]. The time series discussed in

this work are non-stationary.

Common measures such as the mean, median, standard deviation, distribution

type etc. are also used to describe the characteristics of time series signals.

According to [HA18], many time series can be divided into three elements:

trend and cycle, seasonality, and the reminder component. Trend refers to a

long-term change in a time series, such as a steady increase or decrease over
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time. Cycle describes repeating patterns in the time series that do not have a

fixed frequency. Both trend and cycle are often combined into a trend-cycle

component of the time series. Seasonality comes into play when the time series

is affected by seasonal factors such as the day of the year, the day of the week, or

the hour of the day, whereby the frequency is fixed and known in advance. The

reminder component represents the random part of the time series. The time

series value y at time instance t is composed from the three components, either

additively or multiplicatively, as expressed in (1.1) and (1.2) [HA18] with St , Tt

and Rt , which represent the seasonality, the trend and the reminder component

at time instance t respectively. The additive model is used if the seasonal or

trend-cycle components do not vary with the level of the time series [HA18]. In

contrast, multiplicative decomposition is advised for time series for which the

change in a seasonal or trend-cycle component is proportional to the level of the

time series [HA18].

yt = St +Tt +Rt (1.1)

yt = St ×Tt ×Rt (1.2)

Pure random time series that can not be broken down into the above-mentioned

components, such as stock data, can thus hardly be forecasted. Hence, the abil-

ity to decompose a time series into such components is a precondition for being

able to provide meaningful forecasts of the time series. According to [HA18],

the tools to detect the components within a time series are:

a) Plots of a time series

b) The calculation of the moving average Tt at time t for a trend-cycle com-

ponent detection using the time series values k steps before and k steps

after t.

Tt =
1

m

k

∑
j=−k

yt+ j,m = 2k+1 (1.3)

c) Seasonal and trend decomposition based on Loess (STL) with the latter

being a method for estimation of nonlinear relationships [HA18]. This

approach is used for time series with additive composition. For time se-
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ries with multiplicative characteristics, an application of the logarithm is

recommended before applying STL.

1.1.2 Time series forecasting

Time series forecasting can be defined as the computation of future values of a

time series based on the past inputs of the time series and optionally based on

values from other time series that are correlated with the original time series.

While the process is similar to prediction in machine learning (ML) or classifi-

cation in pattern recognition, in the case of forecasting, the temporal aspect is

important [Jos22]. Usually, forecasting consists of multiple time instances that

are forecasted sequentially or simultaneously according to their temporal se-

quence [Jos22]. The external time series used for forecasting are often referred

to as exogenous or independent variables, and the time series being forecasted

is referred to as the target variable, dependent variable, or endogenous variable

[Jos22]. Depending on the model defined, forecasts for multiple exogenous

time series may be used. In addition, previously forecasted values of the tar-

get variable or previous values of exogenous variables are often used as input

for forecasting the next time instance. This is shown schematically in Figure

1.2. The forecast window includes the forecast of four time points in the fu-

ture with t0 as the first forecast time point. To obtain the forecast value for t0,

the values of the exogenous variable from time points [t−2, t0] and the values of

the target variable at time points [t−3, t−1] are used. After the forecast for t0 is

obtained, the forecast for t1 is executed, whereby the values of the independent

variable at time points [t−1, t1] and the values of the dependent variable at time

instances [t−2, t0] are utilized with the previously obtained forecast value at t0.

The forecast stops when all the time instances within the forecast window have

been processed. The various models use different types of exogenous variables,

varied numbers of past time points and diverging sizes of the forecast window.
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Figure 1.2: Time series forecasting principle.

1.1.3 Feature vector and classifier pipeline

Since a forecast algorithm can also be described in terms of a classifier that takes

the exogenous and past (or already forecasted) values of the target variable as

inputs and returns the class of target variable for a time instance tc as output,

some terms related to the definition of a feature vector and the pipeline for

developing a classification algorithm are introduced. In pattern recognition, the

feature vector describes the vector of random variables whose components in

combination describe a unique pattern used to distinguish different classes of

objects [TK09]. For l different features, the i-th feature vector is formed as

described in (1.4), where T stands for transposition.

xi = [x1,i,x2,i, ..,xl,i]
T (1.4)

Each feature vector can be assigned to an object class via a classification al-

gorithm (classifier). If the classes are known in advance, the feature vector is

called a training feature vector [TK09]. Theodoridis and Koutroumbas [TK09]

present the pipeline for developing a classification algorithm that can be directly

used for designing a forecasting algorithm. The pipeline consists of six stages

as shown in Figure 1.3:

• data collection from sensor data,

• extraction of numerical features from non-numerical raw data,
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• data preprocessing including treatment of outliers, missing values and

different data ranges

• selection of non-redundant features for which the classifier performs best

• design of the classifier,

• evaluation of the implemented classifier.

For the development of a load forecasting algorithm, all of these steps - except

feature extraction - are important. Since the available raw data for load fore-

casting is numerical or can easily be mapped to numerical values, no feature

extraction step is included here and the feature vector can directly be created.

sensor feature
extraction

feature
selection

classifier
design evaluationpre-

processing

Figure 1.3: A pipeline for the development of a classification algorithm based on [TK09].

1.2 Problem statement

1.2.1 Load forecasting in power systems

From a transmission system perspective, the distribution system can be aggre-

gated to a load or a generator (positive or negative injection), and the network

structure downstream of the connection point can be disregarded. Therefore,

forecasting the demand of the underlying distribution network is usually re-

duced to providing forecasts at the connection points to the distribution network.

At the transmission level, all consumption and generation points are measured

in terms of active and reactive power, current magnitude, and bus voltage and

transmitted to the grid control centers so that the required time series data is

available for the forecast.

In the distribution grid, the substation, the lines branching off the substation

called feeder heads, larger loads, or generators are measured while most parts
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of the distribution network are not observed. Here, forecasts are also made at

some level of aggregation, for example, at the supplying transformer [HWS20],

at the feeder heads [Sun+16], or for larger wind farms, where mostly active and

reactive power measurements or current magnitudes are available.

At both the transmission and distribution levels, load forecasts are usually cal-

culated for active power values, and the most important input for the forecast

is the historical load data obtained from measurements. These values have a

high correlation between loads in subsequent hours. Frequently, the days that

lie 24 hours or a week before the forecast day form the set of input variables

[RB12]. In addition to the corresponding historical data from field measure-

ments, calendar data relating to the type of day (holiday or working day, day

of the week, season) is also included as an independent variable in the forecast

models because electricity consumption changes with weekly or seasonally re-

curring patterns of end-user behavior. Furthermore, weather forecasts such as

ambient temperature, humidity, wind speed, or radiation are also often used

as independent variables [PHK92; ZYC17], whereby the relationship between

load and weather factors can often be non-linear in the case of high or low tem-

peratures [FC06].

1.2.2 Forecasting horizons

Depending on the task the forecast is prepared for, a distinction is made between

short, medium, and long-term load forecasts. Typical horizons for short-term

forecasts range from a few hours to a week in advance, whereby time intervals

of 24 or 48 hours are very common. The forecast frequency ranges from one to

four times per hour.

Short-term forecasts are mainly used for planning generation schedules (unit

commitment) and economic dispatch (adjustment of the generation to meet the

demand in case network congestions are expected). If the demand cannot be

met, the utility can purchase or sell the difference on the energy market. For

the European Transmission System Operators, for example, there is the Euro-

pean intraday and day-ahead market called EPEX SPOT. While energy markets
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are well established on the transmission level, they still comprise an area of re-

search in distribution networks.

The earlier and more accurately the utility knows its demand, the more effi-

ciently it can reduce the cost of its supply. According to [Hon15], a utility with

a yearly peak load of 1 GW can save between 300 k EUR and 600 k EUR per

year if the forecast error is reduced only by 1 percent.

A medium-term forecast usually refers to time intervals from one week to one

year in advance, whereas long-term forecasts are conducted for periods between

one and several years ahead [SA10]. For the medium- and long-term forecasts,

the forecast frequency decreases from once a day to once a week or month.

Medium- and long-term forecasts help utilities plan future networks, estimate

the amount of fuel required and design the power supply contracts [Don19;

WS21].

1.2.3 Challenges in load forecasting in modern power grids

One of the most significant challenges for modern power grids is the increasing

number of Renewable Energy Sources (RES) or Distributed Energy Sources

(DER). In its report [NYI17a], the New York Independent System Operator

(NYISO) outlines the expected impact of DERs on its power grid as shown in

Figures 1.4 and 1.5. The installation of a large number of DERs drives the trans-

formation of the hierarchical network structure (Figure 1.4) into a decentralized

structure that is similar to the Internet (Figure 1.5). Although the transforma-

tion process takes time, in the near future, there will be no unidirectional flow

of generated power through transmission network towards the load placed in

the distribution network. Electric power will flow in different directions across

the power network with the result that there will be more dynamics at different

voltage levels. This reversed power flow can already be observed in distribu-

tion networks containing high percentage of RESs such as the network of the

German utility EWE-Netz [HWS20].
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